
В. Н. Вінаградаў

YAPYZHHE

В. Н. Вінаградаў

HEPPAP

Падручнік для 9 класа ўстаноў агульнай сярэдняй адукацыі з беларускай мовай навучання

> Дапушчана Міністэрствам адукацыі Рэспублікі Беларусь

2-е выданне, перапрацаванае і дапоўненае

МІНСК НАЦЫЯНАЛЬНЫ ІНСТЫТУТ АДУКАЦЫІ 2014

УДК 744(075.3=161.3) ББК 30.11 В48

Рэцэнзенты:

кафедра «Інжынерная графіка і САПР» установы адукацыі «Беларускі дзяржаўны аграрны тэхнічны ўніверсітэт» (доктар пед. навук, канд. тэхн. навук, праф., заг. кафедры Л. С. Шабека);

настаўнік працоўнага навучання і чарчэння вышэйшай катэгорыі дзяржаўнай установы адукацыі «Грозаўская сярэдняя школа» Капыльскага раёна Мінскай вобласці *І. В. Дубіна*

Умоўныя абазначэнні:

- 🤨 пытанні для паўтарэння;
- заданні;
- дапаможны матэрыял (для азнаямлення);
- ДІ дадатковая інфармацыя(для самастойнага вывучэння);
- **ГР** 1-1 графічная работа (нумар, варыянт)

Прынятыя ў падручніку матэматычныя абазначэнні:

Пункты — A, B, C ... aбо 1, 2, 3

Прамыя — a, b, c ...

Плоскасці — α , β , γ

Плоскасці праекцый — Π_1 , Π_2 , Π_3 ...

Паралельнасць — ||.

Перпендыкулярнасць — 1.

Супадзенні — ≡ або =.

Прыналежнасць — \in .

ISBN 978-985-559-388-2

- © Вінаградаў В. Н., 2008
- © Вінаградаў В. Н., са змяненнямі, 2014
- © Афармленне. НМУ «Нацыянальны інстытут адукацыі», 2014

Дарагія сябры!

Перад вамі падручнік па новым прадмеце — «Чарчэнне», які забяспечвае вывучэнне рознай графічнай інфармацыі пра аб'екты і з'явы навакольнага свету.

На аснове навуковых уяўленняў, сістэмы канструктарскай дакументацыі і іншых даных чарчэнне дае чалавеку пэўны мінімум адукацыі, які дазваляе яму арыентавацца ў шырокім коле графічных інфармацыйных сродкаў. Яно фарміруе навыкі графічнай дзейнасці, развівае прасторавыя ўяўленні, дазваляе далучыцца да графічнай культуры грамадства.

Асобае месца ў чарчэнні адведзена чарцяжу як асноўнаму дакументу на вытворчасці.

«Чарчэнне» ў ІХ класе — вучэбны прадмет, які сістэматызуе атрыманую раней інфармацыю аб графічных відарысах. Яго вывучэнне дазволіць вам сфарміраваць цэласную сістэму ведаў аб правілах выканання чарцяжоў, эскізаў, тэхнічных рысункаў, авалодаць спосабамі чытання графічнай інфармацыі, якая сустракаецца ў розных сферах чалавечай дзейнасці.

Вучэбны прадмет «Чарчэнне» дасць вам магчымасць лягчэй адаптавацца да працягу навучання ў сярэдніх спецыяльных і вышэйшых навучальных установах, да авалодання ў далейшым інжынерна-тэхнічнымі, тэхналагічнымі, эканамічнымі, педагагічнымі і іншымі спецыяльнасцямі, да ўдзелу ў практычнай дзейнасці, у вывучэнні асноў графічнай мовы як сродку грамадскіх зносін. Правообладатель Национальный институт образования

Веды і ўменні, атрыманыя на ўроках чарчэння, спатрэбяцца таксама пры вывучэнні геаметрыі, геаграфіі і іншых вучэбных прадметаў.

У сувязі з тым, што ў чарчэнні разглядаюцца розныя віды графічнай інфармацыі, яе прымяненне ў вытворчасці, інфармацыйных тэхналогіях і г. д., можна разам з традыцыйнай назвай прадмета — «Чарчэнне» — ужываць таксама назву «Тэхнічная графіка».

Акрамя асноўнага тэксту і неабходных ілюстрацый, падручнік змяшчае дапаможны матэрыял і дадатковую інфармацыю.

Дапаможны матэрыял — гэта тыя звесткі, якія вы атрымалі раней і якія спатрэбяцца вам для засваення праграмы ў ІХ класе. Дадатковая інфармацыя — яна выдзелена іншым шрыфтам — змяшчае звесткі, якія могуць быць выкарыстаны для самастойнага вывучэння.

Тэрміны і паняцці, да якіх прыйдзецца звяртацца неаднаразова, прыведзены ў Кароткім тэрміналагічным слоўніку (КТС). Большасць тэрмінаў маюць разгорнутае тлумачэнне паняццяў і могуць быць выкарыстаны для паўтарэння вучэбнага матэрыялу.

Падручнік змяшчае таксама заданні на замацаванне атрыманых ведаў і выкананне графічных работ. Зорачкай (*) адзначаны найбольш складаныя з іх. Прыведзеныя ў падручніку заданні рэкамендуецца выконваць у рабочым сшытку.

Аўтар жадае вам поспехаў у вывучэнні графічных сродкаў інфармацыі!

Прафесар В. Н. Вінаградаў

І. ГРАФІЧНЫЯ ВІДАРЫСЫ. ТЭХНІКА ВЫКАНАННЯ ЧАРЦЯЖОЎ І ПРАВІЛЫ ІХ АФАРМЛЕННЯ

§ 1. Графічныя відарысы. Чарцяжы

1.1. Графічная інфармацыя. Вакол чалавека шмат розных прадметаў, якія можна апісаць словамі, сфатаграфаваць, намаляваць. Звесткі аб навакольных прадметах і з'явах, іх уласцівасцях, стане называюць *інфармацыяй*.

Інфармацыя, якая ўспрымаецца зрокам, — тэксты, фатаграфіі, рысункі, знакі — называецца візуальнай, г. зн. зрокавай. Любы відарыс — гэта від візуальнай інфармацыі.

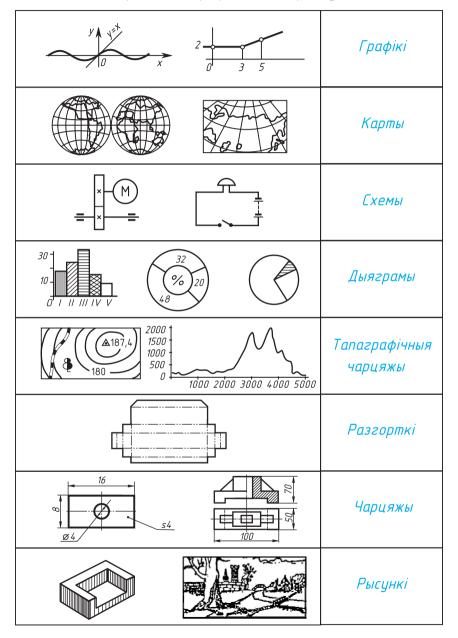
Візуальную інфармацыю, паказаную ў выглядзе графікаў, чарцяжоў, рысункаў, схем і да т. п., называюць *графічнай*.

- ?
- 1. Якую інфармацыю называюць графічнай? Прывядзіце прыклады.
- 2. Якія іншыя віды інфармацыі, акрамя графічнай, вы можаце назваць?
- 1.2. Графічныя відарысы. Відарысы, якія складаюцца з пунктаў, ліній, штрыхоў і выконваюцца алоўкам, крэйдай, тушшу, фламастарам на паперы, кардоне, тканіне, класнай дошцы, з'яўляюцца графічнымі.

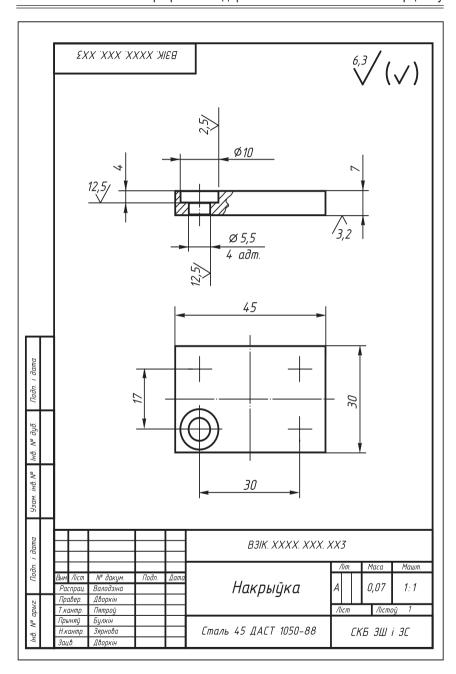
Некаторыя графічныя відарысы — рысункі, гравюры, плакаты — уяўляюць сабой прыклады **мастацкай графікі**, іншыя — чарцяжы, геагра-

фічныя карты, графікі, схемы, дыяграмы, разгорткі, эскізы, тэхнічныя рысункі — могуць быць вытворчымі або вучэбнымі.

Дарожныя і гандлёвыя знакі, лагатыпы — узоры *прыкладной (практычнай) графікі*.


Некаторыя графічныя відарысы паказаны на рысунку 1.

- ?
- 1. Якія відарысы, на ваш погляд, адносяць да графічных?
- 2. Прывядзіце прыклады графічных відарысаў, дайце ім характарыстыку.
- **1.3. Чарцяжы.** У вытворчасці, у вучэбных майстэрнях шырока выкарыстоўваюць такія відарысы, як чарцяжы.


Разгледзьце рысунак 2, на якім паказаны чарцёж дэталі. Як бачым, чарцёж змяшчае відарысы і розныя надпісы. Па відарысах можна меркаваць аб геаметрычнай форме дадзенай дэталі і форме яе асобных частак. Па надпісах — аб назве дэталі, маштабе, у якім выкананы відарысы, матэрыяле, з якога выраблена дэталь, і інш. Размерныя лікі даюць магчымасць меркаваць аб велічыні дэталі цалкам і яе асобных частак. На чарцяжы змяшчаюцца даныя аб якасці апрацоўкі дэталі пры яе вырабе і іншая інфармацыя.

Такім чынам, чарцёж уяўляе сабой сукупнасць графічных і знакавых кампанентаў, якія разам з тлумачальным тэкстам даюць рознабаковую характарыстыку адлюстраваным на ім прадметам. Пры дапамозе ліній, сімвалаў, надпісаў, умоўных знакаў ён павінен даваць поўнае ўяўленне аб дэталі.

Прыклады графічных відарысаў

Рыс. 1. Графічныя відарысы

Рыс. 2. Чарцёж дэталі Правообладатель Национальный институт образования

Таму *чарцёж* называюць графічным дакументам таго ці іншага вырабу, які ўтрымлівае звесткі, неабходныя для яго распрацоўкі, выканання, кантролю, мантажу, эксплуатацыі і рамонту. З некаторымі з іх мы пазнаёмімся пазней¹.

- 1. Якія даныя аб вырабе ўтрымлівае чарцёж?
- 2. Дайце азначэнне чарцяжу.

1. Знайдзіце ў КТС азначэнні наступных паняццяў: чарцёж, выраб, дэталь, элементы дэталі.

1.4. Значэнне чарцяжоў у практыцы. Чарцяжы з'яўляюцца адным з асноўных відаў графічнай інфармацыі. У сучаснай вытворчасці чарцяжу адводзяць асобую ролю. На заводах і фабрыках, у майстэрнях ствараюць розныя вырабы: станкі, аўтамабілі, радыёўстаноўкі, бытавыя прыборы і многае іншае. Стварыць усё гэта нельга без чарцяжоў. Па чарцяжах вырабляюць асобныя дэталі машын, збіраюць з гатовых дэталей складаныя прыборы і механізмы, ажыццяўляюць іх рамонт і кантроль. Чарцёж з'яўляецца лаканічным сродкам перадачы тэхнічнай думкі.

Пры ўзвядзенні будынкаў, збудаванняў, будаўніцтве плацін, шахт, пракладцы шашэйных дарог і чыгункі выкарыстоўваюць архітэктурныя і інжынерна-будаўнічыя чарцяжы (гл. дадатак 8).

Але чарцяжы патрэбныя не толькі ў тэхніцы. Яны з'яўляюцца пастаяннымі спадарожнікамі розных прафесій чалавека. Па іх вырабляюць мэблю, азеляняюць гарады і пасёлкі. Чар-

¹ На вучэбных чарцяжах дазваляецца прыводзіць не ўсе даныя, якія павінны змяшчаць вытворчыя чарцяжы. У асобных выпадках чарцяжом мы будзем называць толькі відарыс дэталі.

цяжы патрэбныя доктару (для вывучэння медыцынскай тэхнікі), мадэльеру (для канструявання адзення і абутку) і многім іншым спецыялістам.

Чарцяжы як від графічнай інфармацыі перасылаюць з завода на завод, з краіны ў краіну. Чалавек любой спецыяльнасці, калі ён умее чытаць чарцяжы, зразумее іх, вывучыць па іх будову самай складанай машыны. Таму, каб стаць тэхнічна пісьменным чалавекам, трэба добра ведаць асновы графічнай інфармацыі.

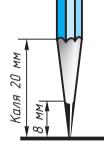
Чарцёж — гэта інтэрнацыянальная графічная мова. Яна зразумелая любому спецыялісту незалежна ад таго, на якой мове чалавек гаворыць.

Графічная мова бярэ свой пачатак ад першабытных малюнкаў — піктаграм (ад лац. *pictus* — намаляваны). З іх дапамогай людзі перадавалі звесткі пра былыя з'явы, падзеі, прадметы і г. д.

У наш час прынцып піктаграфіі як спосаб адлюстравання прадметаў пры дапамозе ўмоўных знакаў знаходзіць шырокае прымяненне ў дапаможных сродках камунікацыі (ад лац. *communicatio* — перадача інфармацыі, сувязь, шлях). Да іх адносяцца эмблемы прадпрыемстваў і фірм, рэклама і іншыя віды прыкладной графікі.

Сучасны чарцёж прайшоў доўгі шлях развіцця. Мінулі стагоддзі, перш чым графічныя відарысы набылі сённяшні выгляд.

- 1. Як вы думаеце, чаму чарцёж называюць графічнай мовай?
- 2. Як выкарыстоўваюцца чарцяжы ў практычнай дзейнасці чалавека?

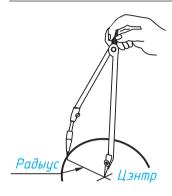

2. Прачытайце ў дадатку 7 звесткі аб гісторыі развіцця чарцяжа.

§ 2. Тэхніка выканання чарцяжоў

2.1. Чарцёжныя матэрыялы і прылады. Да чарцёжных матэрыялаў і прылад адносяць паперу, алоўкі, сціркі, кнопкі, лінейкі, вугольнікі, цыркулі і інш.

Чарцяжы выконваюць на *шчыльнай белай не*лінеенай паперы. Такая папера называецца **чарцёжнай**.

Для выканання графічных работ спатрэбяцца алоўкі маркі Т (цвёрдыя), М (мяккія) і ТМ (сярэдняй цвёрдасці). Замежныя алоўкі абазначаюцца так: Н (цвёрдыя), В (мяккія), НВ (сярэдняй цвёрдасці). Чым большы лік, які стаіць побач з літарай, тым больш цвёрды або больш мяккі гэты аловак.


Рыс. 3. Правільна завостраны аловак

Правільна падрыхтаваны да работы аловак паказаны на рысунку 3.

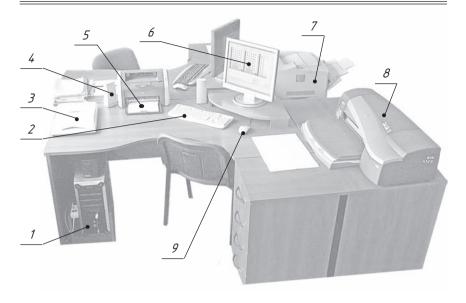
- 1. Пералічыце вядомыя вам чарцёжныя матэрыялы.
- 2. Як абазначаюць ступень цвёрдасці алоўка?

2.2. Як працаваць чарцёжнымі інструментамі. Прамыя лініі спачатку праводзяць уздоўж канта лінейкі або вугольніка без націску цвёрдым, добра завостраным алоўкам, а затым абводзяць алоўкам сярэдняй цвёрдасці. Пры гэтым аловак крыху нахіляюць у бок руху. Гарызантальныя лініі праводзяць злева направа, вертыкальныя і нахіленыя — знізу ўверх. Прыёмы правядзення ліній з дапамогай лінейкі і вугольніка змешчаны на форзацы І.

Рыс. 4. Правядзенне акружнасці цыркулем

Як правільна працаваць цыркулем? Ножку цыркуля з іголкай ставяць у цэнтр акружнасці. Цыркуль верцяць за галоўку вялікім і ўказальным пальцамі ў напрамку руху гадзіннікавай стрэлкі (рыс. 4). Кароткая ножка з алоўкавай устаўкай і іголка цыркуля ў рабочым становішчы павінны быць паралельныя паміж сабой.

Як вы думаеце, ад чаго залежыць якасць выканання чарцяжоў?


- 3. 1. Паўтарыце па КТС звесткі аб чарцёжных інструментах.
 - 2. Знайдзіце ў Інтэрнэце звесткі аб чарцёжных прыборах.

2.3. Абсталяванне рабочага месца канструктара. Многія з вас знаёмы з камп'ютарнымі гульнямі. У той жа час камп'ютар выкарыстоўваецца і як інструмент для рысавання і чарчэння, стварэння рысункаў, чарцяжоў, схем і іншых відарысаў, якія з'яўляюцца ўзорамі камп'ютарнай графікі.

Работа канструктара над чарцяжом вельмі працаёмкая. Таму для палягчэння працы спецыяліста існуе шэраг прыстасаванняў, якія па зададзенай праграме аўтаматычна выконваюць усе графічныя пабудовы. Такія прыстасаванні для выканання чарцяжоў называюць *графапабудавальнікамі*.

Для якаснага праектавання вырабаў створаны цэлыя *сістэ***мы аўтаматызаванага праектавання** (скарочана САПР).

Аўтаматызаванае рабочае месца канструктара (APM) уключае ў адзіны комплекс персанальны камп'ютар і графічныя ўстройствы для выканання розных відарысаў (рыс. 5).

Рыс. 5. Рабочае месца канструктара:

- 1 сістэмны блок камп'ютара; 2 клавіятура;
- 3 сканер; 4 калонка; 5 лазерны прынтар;
- 6 манітор камп'ютара; 7 струменны прынтар;
- 8 прынтар (плотар) для шырокафарматнага друку; 9 камп'ютарная мыш
- ?
- 1. Як вы лічыце, з якой мэтай пры праектаванні вырабаў у канструктарскіх бюро выкарыстоўваюць графапабудавальнікі?
- 2. Што ўключае АРМ канструктара?

2.4. Прымяненне камп'ютарных тэхналогій для выканання чарцяжоў. Камп'ютарная графіка ўяўляе сабой працэс стварэння, апрацоўкі, перадачы, захоўвання і практычнага прымянення графічных відарысаў пры дапамозе вылічальнай тэхнікі. Ствараючы на экране камп'ютара (маніторы) прасторавую мадэль, яе можна паварочваць і відазмяняць па ўласным жаданні, што забяспечвае добрыя ўмовы для творчага працэсу пры праектаванні розных вырабаў.

Прасторавая мадэль з'яўляецца найбольш нагляднай, дакладнай і поўнай крыніцай інфармацыі пра аб'ект. Яе выкарыстанне дазваляе фарміраваць і афармляць розную канструктарскую дакументацыю. Працэс стварэння прасторавай мадэлі на экране абапіраецца як на традыцыйныя графічныя веды і ўменні, так і на набываемыя навыкі працы з электроннымі сродкамі.

Адна з найважнейшых пераваг выканання чарцяжа пры дапамозе камп'ютара — зручнасць выпраўлення: лёгка «выціраць» (прымаць) лішнія лініі, пры гэтым зробленыя выпраўленні непрыкметныя; можна свабодна перасоўваць відарысы па полі, дубліраваць іх і г. д. Другая перавага — атрыманне каляровых чарцяжоў, на якіх, напрыклад, тонкія лініі выкананы адным колерам, суцэльныя тоўстыя — іншым і г. д. Каляровыя чарцяжы лёгка чытаюцца¹.

Электронныя чарцяжы зручна захоўваць у памяці камп'ютара, перадаваць практычна ў любы пункт зямнога шара (тады як для перадачы папяровых чарцяжоў патрабуецца значны час). Электронныя чарцяжы лёгка размножваць (тыражаваць).

§ 3. Некаторыя правілы афармлення чарцяжоў

3.1. Стандарты АСКД. Уявіце, што было б, калі б кожны інжынер або чарцёжнік выконваў і афармляў чарцяжы па-свойму, не прытрымліваючыся адзіных правіл. Такія чарцяжы былі б незразумелыя іншым. Каб гэтага пазбегнуць, у шэрагу краін прыняты і дзейнічаюць дзяр-

¹ З працэсам камп'ютарнага выканання чарцяжоў вы можаце пазнаёміцца на факультатыўных занятках па чарчэнні (гл. спіс літаратуры ў канцы падручніка).

Правообладатель Национальный институт образования

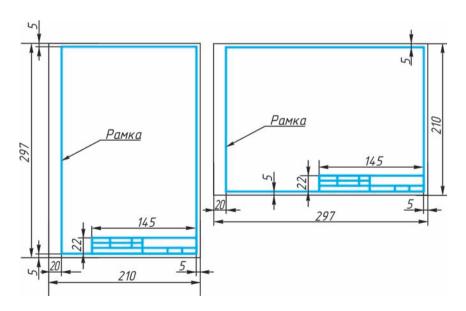
жаўныя стандарты Адзінай сістэмы канструктарскай дакументацыі (АСКД).

Стандарты АСКД — гэта нарматыўныя дакументы, якія ўстанаўліваюць адзіныя правілы выканання і афармлення канструктарскіх дакументаў ва ўсіх галінах прамысловасці і вытворчасці. Да канструктарскіх дакументаў адносяць чарцяжы дэталей, зборачныя чарцяжы, схемы, некаторыя тэкставыя дакументы і інш.

Стандарты ўстаноўлены не толькі на канструктарскія дакументы, але і на асобныя віды прадукцыі, якая выпускаецца прадпрыемствамі. Дзяржаўныя стандарты (скарочана ДАСТ) абавязковыя для ўсіх прадпрыемстваў і арганізацый.

Кожны стандарт мае адпаведнае абазначэнне. Напрыклад, ДАСТ 2.301-68. Тут лічба 2 паказвае клас стандарту, 301 абазначае нумар стандарту, а 68 — год яго рэгістрацыі.

У Беларусі дзейнічае свая сістэма стандартызацыі. Стандарты распрацаваны на многія віды вырабаў, інфармацыі і інш. Скарочана стандарты Беларусі абазначаюць літарамі СТБ.


Стандарты час ад часу пераглядаюць. Змяненне стандартаў абумоўлена развіццём прамысловасці і ўдасканаленнем тэорыі і практыкі выканання графічных відарысаў.

- ?
- 1. Што такое стандарт? З якой мэтай ён уведзены?
- 2. Як скарочана абазначаюць стандарт?
- **3.2. Фарматы.** Чарцяжы і іншыя канструктарскія дакументы нельга выконваць на лістах паперы адвольных памераў.

Для эканомнага расходавання паперы, зручнасці капіравання, захавання чарцяжоў і карыстання імі стандарт устанаўлівае строга вызначаныя памеры лістоў — фарматы.

На ўроках чарчэння вы будзеце карыстацца лістамі чарцёжнай паперы, памеры старон якой $210{\times}297$ мм. Такі фармат абазначаюць A4. Звесткі пра фарматы змешчаны на с. 168 у дадатках 1 і 2.

Кожны фармат павінен мець *рамку*, якая абмяжоўвае яго рабочае поле, г. зн. поле для выканання чарцяжоў (рыс. 6). Лініі рамкі — суцэльныя тоўстыя асноўныя. Іх праводзяць зверху, справа і знізу на адлегласці 5 мм ад мяжы фармату, а з левага боку — на адлегласці 20 мм ад яе. Гэту палоску пакідаюць для падшыўкі чарцяжоў.

Рыс. 6. Афармленне ліста фармату A4 Правообладатель Национальный институт образования

- 1. Якія памеры мае ліст фармату А4?
- 2. На якой адлегласці ад мяжы фармату трэба праводзіць лініі рамкі чарцяжа?

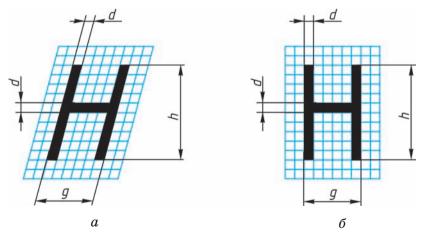
- 4. Якую максімальную колькасць фарматаў A4 можна атрымаць шляхам дзялення фармату A1 на роўныя часткі?
- 3.3. Асноўны надпіс чарцяжа. На чарцяжах у правым ніжнім вугле размяшчаюць асноўны надпіс (гл. рыс. 2). Яго форму, памеры і змест ўстанаўлівае стандарт. На вучэбных чарцяжах вы будзеце выконваць асноўны надпіс у выглядзе прамавугольніка памерам 22×145 мм (гл. рыс. 6). Памеры яго асобных графаў дадзены ў дадатку 3. Узор запоўненага асноўнага надпісу паказаны на рысунку 7. Вытворчыя чарцяжы, якія выконваюць на лістах фармату А4, размяшчаюць толькі вертыкальна, а асноўны надпіс на іх толькі ўздоўж кароткага боку. На чарцяжах іншых фарматаў асноўны надпіс можна размяшчаць як уздоўж доўгага, так і ўздоўж кароткага боку.

Як выключэнне, на вучэбных чарцяжах фармату A4 асноўны надпіс дазволена размяшчаць як уздоўж доўгага, так і ўздоўж кароткага боку ліста (гл. рыс. 6).

- 1. Дзе змяшчаюць асноўны надпіс на чарцяжы? Назавіце яго памеры.
- 2. Разгледзьце рысунак 7 і пералічыце, якія звесткі ўтрымлівае асноўны надпіс чарцяжа.

Чарціў	Васілёнак		<i>Утулка</i>	
Праверыў	Клімовіч			
Школа № 12, кл. 9 Б		Сталь	1:1	<i>№ 3</i>

Рыс. 7. Асноўны надпіс на вучэбным чарцяжы Правообладатель Национальный институт образования


3.4. Шрыфты. Усе надпісы на чарцяжах павінны быць выкананы чарцёжным шрыфтам. Шрыфты падзяляюцца на вялікія і малыя. Абрысы літар і лічбаў чарцёжнага шрыфту ўстаноўлены стандартам (гл. дадатак 4). Стандарт вызначае ў міліметрах вышыню і шырыню літар і лічбаў, таўшчыню ліній абводкі, адлегласць паміж літарамі, словамі і асновамі радкоў (гл. дадатак 5).

Прыклад пабудовы адной з літар *(Н)* на дапаможнай сетцы паказаны на рысунку 8.

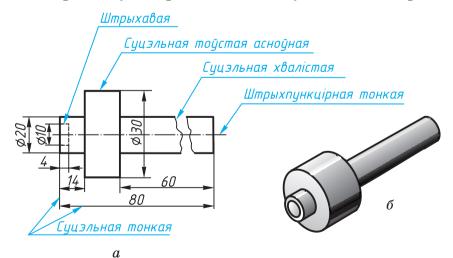
Шрыфт можа быць як з нахілам (каля 75°) (рыс. 8, a), так і без нахілу (рыс. $8, \delta$).

Стандарт устанаўлівае некалькі памераў шрыфту, напрыклад: 3,5; 5; 7; 10 і інш. За *памер* (h) шрыфту прымаецца велічыня, вызначаная вышынёй вялікіх літар у міліметрах. Малыя літары маюць вышыню на памер меншую за вялікія.

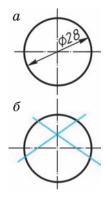
Асноўны надпіс вы будзеце выконваць шрыфтам 3,5; назву чарцяжа — шрыфтам 5 або 7.

Рыс. 8. Прыклады пабудовы літары чарцёжнага шрыфту

- 1. Як вызначаецца памер шрыфту?
- 2. Чаму роўная шырыня вялікіх літар? (Гл. дадатак 5.)


5. Выканайце ў рабочым сшытку некалькі надпісаў. Можаце, напрыклад, напісаць сваё прозвішча, імя, хатні адрас.

§ 4. Лініі, якія прымяняюцца на чарцяжах


Звернемся да чарцяжа дэталі (рыс. 9, a), наглядны відарыс якой прыведзены на рысунку $9, \delta$.

Як бачыце, чарцёж мае шмат розных ліній. Для таго каб відарыс быў усім зразумелы, ДАСТ устанаўлівае пэўныя абрысы і асноўнае прызначэнне ліній для ўсіх чарцяжоў прамысловасці і будаўніцтва. Назвы ліній, іх абрысы, прызначэнне і таўшчыня абводкі паказаны на форзацы І.

Выкарыстоўваючы розныя лініі пры выкананні чарцяжоў, варта мець на ўвазе некаторыя

Рыс. 9. Лініі чарцяжа Правообладатель Национальный институт образования

Рыс. 10. Правядзенне цэнтравых ліній

асаблівасці іх абрысаў. Так, штрыхі (рысачкі) штрыхавой лініі павінны быць аднолькавай формы на ўсім чарцяжы. Пры выкарыстанні штрыхпункцірнай тонкай лініі для паказу цэнтра дуг акружнасцей (рыс. 10) месцазнаходжанне цэнтра павінна вызначацца перасячэннем штрыхоў, як паказана на рысунку 10, a, а не кропкай, як на рысунку 10, δ .

Канцы восевых і цэнтравых ліній павінны выступаць за контуры відарыса прадмета, але не большчым на 5 мм.

Пры пабудове разгортак выкарыстоўваюць штрыхпункцірную з дзвюма кропкамі лінію для паказу лініі згібу.

Таўшчыня ліній аднаго і таго ж тыпу павінна быць аднолькавай для ўсіх відарысаў на дадзеным чарцяжы. Яна павінна быць не меншай за 0,3 мм, калі чарцёж выконваецца алоўкам.

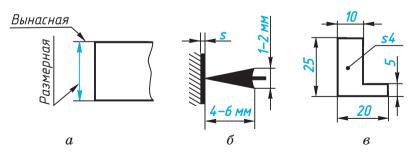
- 1. Якое прызначэнне мае суцэльная тоўстая асноўная лінія?
- 2. Якая лінія называецца штрыхавой? Дзе яна выкарыстоўваецца? Якая таўшчыня гэтай лініі?
- 3. Дзе выкарыстоўваюць на чарцяжы штрыхпункцірную тонкую лінію? Якая яе таўшчыня?
- 4. Для чаго на чарцяжы выкарыстоўваюць суцэльную тонкую лінію? Якой таўшчыні яна павінна быць?

6. Якую таўшчыню павінна мець штрыхавая лінія, калі таўшчыня суцэльнай тоўстай лініі будзе, напрыклад, 1,2 мм? Правообладатель Национальный институт образования

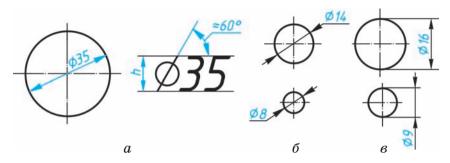
ГР 1-1 Афармление фармату

На лісце чарцёжнай паперы фармату A4 начарціце рамку і асноўны надпіс. Запоўніце па ўказанні настаўніка асобныя графы надпісу чарцёжным шрыфтам. Падрыхтаваны фармат можа быць выкарыстаны пры выкананні адной з наступных графічных работ.

§ 5. Нанясенне памераў

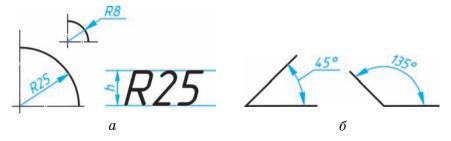

5.1. Агульныя звесткі. Для вызначэння велічыні паказанага вырабу або якой-небудзь яго часткі па чарцяжы на ім наносяць памеры. Памеры падзяляюць на лінейныя і вуглавыя. Лінейныя памеры характарызуюць даўжыню, шырыню, таўшчыню, вышыню, дыяметр або радыус вымяраемай часткі вырабу. Вуглавыя памеры характарызуюць велічыню вуглоў.

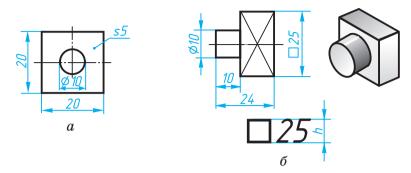
Лінейныя памеры на чарцяжах паказваюць у міліметрах, але абазначэнне адзінкі вымярэння не выносяць. Вуглавыя памеры паказваюць у градусах, мінутах і секундах.


Агульная колькасць памераў на чарцяжы павінна быць найменшай, але дастатковай для выканання і кантролю вырабу.

- У якіх адзінках выражаюць лінейныя памеры на машынабудаўнічых чарцяжах?
- **5.2. Правілы нанясення памераў.** Такія правілы ўстаноўлены стандартам. Назавём іх, карыстаючыся атрыманымі раней звесткамі.

- 1. Памеры на чарцяжах паказваюць з дапамогай вынасных і размерных ліній і размерных лікаў. Спачатку праводзяць вынасныя лініі перпендыкулярна да адрэзка, памер якога паказваюць (рыс. 11, а). Затым на адлегласці 10 мм і больш ад контуру дэталі праводзяць паралельную яму размерную лінію. Яна абмяжоўваецца з двух бакоў стрэлкамі. Якой павінна быць стрэлка, паказана на рысунку 11, б. Вынасныя лініі выходзяць за канцы стрэлак размернай лініі на 1...5 мм. Вынасныя і размерныя лініі праводзяць суцэльнай тонкай лініяй. Над размерны лініяй, бліжэй да яе сярэдзіны, наносяць размерны лік.
- 2. Калі на чарцяжы некалькі размерных ліній, паралельных адна адной, то бліжэй да відарыса размяшчаюць меншы памер, каб вынасныя і размерныя лініі на чарцяжы не перасякаліся. Адлегласць паміж паралельнымі размернымі лініямі выбіраюць ад 7 да 10 мм, каб паміж імі размяшчаліся размерныя лікі, не дакранаючыся да гэтых ліній.
- 3. Для абазначэння **дыяметра** перад размерным лікам наносяць спецыяльны знак кружок, перакрэслены лініяй (рыс. 12, *a*). Калі раз-


Рыс. 11. Нанясенне лінейных памераў Правообладатель Национальный институт образования


Рыс. 12. Нанясенне памераў акружнасцей

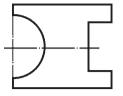
мерны лік унутры акружнасці не ўмяшчаецца на рысунку, яго выносяць за межы акружнасці, як паказана на рысунку 12, δ і ϵ . Таксама робяць пры нанясенні памеру прамалінейнага адрэзка (гл. рыс. 11, ϵ , памер 5).

- 4. Для абазначэння paduyca перад размерным лікам пішуць пропіссю вялікую лацінскую літару R (рыс. 13, a). Размерную лінію для паказу радыуса праводзяць, як правіла, з цэнтра дугі і заканчваюць з аднаго боку стрэлкай, якая ўпіраецца ў пункт дугі акружнасці.
- 5. Для паказу памеру вугла размерную лінію праводзяць у выглядзе дугі акружнасці з цэнтрам у вяршыні вугла (рыс. $13, \delta$).
- 6. Калі размерная лінія размешчана вертыкальна (незалежна ад таго, з якога боку контуру

Рыс. 13. Нанясенне памераў дуг і вуглоў Правообладатель Национальный институт образования

Рыс. 14. Нанясенне памераў квадрата

дэталі), то размерны лік пішуць злева ад гэтай лініі і чытаюць знізу ўверх (гл. рыс. 11, e памеры 25; 5). Пры нахіленых размерных лініях лічбы размяшчаюць над лініяй (гл. рыс. 12, a, памер $\emptyset 35$; рыс. 13, a, памер R25).


- 7. Памеры квадрата ДАСТ рэкамендуе наносіць так, як паказана на рысунку 14, a. У той жа час перад размерным лікам, які паказвае старану квадратнага элемента (адтуліны і інш.), наносяць знак квадрата \square (рыс. 14, δ). Пры гэтым вышыня знака павінна быць роўнай вышыні лічбаў.
- 8. Пры паказе плоскіх дэталей у адной праекцыі таўшчыня дэталі ўмоўна абазначаецца лацінскай малой літарай s. Яе ставяць перад размерным лікам (гл. рыс. 11, e, памер s4 і рыс. 14, a, памер s5).

- 1. Якой таўшчыні павінны быць вынасныя і размерныя лініі?
- 2. Якую адлегласць пакідаюць паміж контурам відарыса і размернымі лініямі? паміж размернымі лініямі?
- 3. Якія знакі і літары наносяць перад размерным лікам пры паказе велічынь дыяметраў і радыусаў? Правообладатель Национальный институт образования

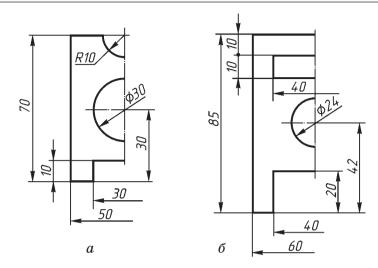
- 7. У КТС прачытайце звесткі аб акружнасці і яе элементах.
- 8. Перачарціце ў рабочы сшытак, захаваўшы прапорцыі і павялічыўшы прыкладна ў 2 разы, відарыс дэталі, які змешчаны на рысунку 15. Нанясіце неабходныя памеры, укажыце таўшчыню дэталі (яна роўная 4 мм).

Рыс. 15. Заданне для практыкаванняў

9. Начарціце ў рабочым сшытку акружнасці, дыяметры якіх роўныя 40, 30, 20 і 10 мм.

Нанясіце іх памеры. Начарціце дугі акружнасцей з радыусамі 40, 30, 20 і 10 мм і нанясіце іх памеры.

ΓΡ 1-2


Чарцёж дэталі

Выканайце чарцяжы дэталей «пласціна» па наяўных палавінах відарысаў, абмежаваных воссю сіметрыі (рыс. 16, a, δ). Нанясіце памеры, пакажыце таўшчыню дэталей (5 мм) надпісам. Маштаб відарыса 2:1. (Інфармацыю аб маштабе гл. у КТС.)

У к а з а н н і. На чарцяжы дадзена толькі палавіна відарыса дэталі. Вам трэба ўявіць, як будзе выглядаць дэталь цалкам, пры гэтым памятаючы аб сіметрыі, і выканаць спачатку эскізна яе відарыс на асобным лісце. Затым варта перайсці непасрэдна да выканання патрэбнага чарцяжа.

На лісце фармату A4 начарціце рамку і вылучыце месца для асноўнага надпісу (22×145 мм). Вызначце цэнтр рабочага поля чарцяжа і ад яго вядзіце пабудову відарыса.

- План пабудовы:
- 1) правядзіце восі сіметрыі;
- 2) пабудуйце тонкімі лініямі прамавугольнік, які адпавядае агульнай форме дэталі;

Рыс. 16. Заданне да графічнай работы № 1

- 3) размецьце відарысы прамавугольных элементаў дэталі;
- 4) вызначыўшы становішча цэнтраў акружнасці і паўакружнасці, правядзіце іх;
- 5) нанясіце памеры элементаў дэталі і яе габарытныя памеры (найбольшыя па даўжыні і вышыні), пакажыце таўшчыню дэталі;
- 6) абвядзіце чарцёж лініямі, устаноўленымі стандартам: спачатку акружнасці, затым гарызантальныя і вертыкальныя прамыя.

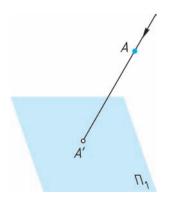
Запоўніце асноўны надпіс і праверце чарцёж.

- 1. Для чаго ў чарчэнні выкарыстоўваюць маштаб?
- 2. Назавіце некаторыя лікавыя маштабы павелічэння і памяншэння.

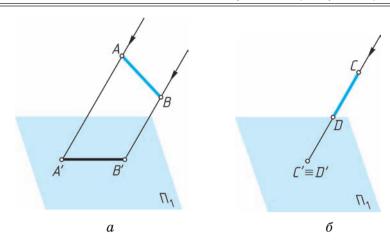
- Які памер павінен мець відарыс дэталі даўжынёй 60 мм, калі яе чарцёж выкананы ў маштабе 1:2.
- 11. Знайдзіце ў Інтэрнэце інфармацыю па тэме «Маштабы чарцяжоў». Правообладатель Национальный институт образования

II. СПОСАБЫ ПАБУДОВЫ ВІДАРЫСАЎ НА ЧАРЦЯЖАХ

§ 6. Спосабы праецыравання


6.1. Агульныя звесткі аб праецыраванні. Відарысы прадметаў на чарцяжах у адпаведнасці з правіламі дзяржаўнага стандарту выконваюць па спосабе (метадзе) прамавугольнага праецыравання. Праецыраваннем будзем называць працэс атрымання праекцый прадмета.

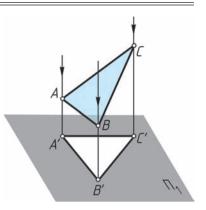
Разгледзім прыклад.


Возьмем у прасторы адвольны пункт A і якуюнебудзь плоскасць. Абазначым гэту плоскасць, напрыклад, вялікай літарай Π (пі) грэчаскага алфавіта з індэксам адзін — г. зн. Π_1 , (рыс. 17). Правядзём праз пункт A прамую так, каб яна перасекла плоскасць Π_1 у некаторым пункце A'. Тады пункт A' будзе праекцыяй пункта A. Праекцыі пунктаў будзем абазначаць тымі ж літа-

рамі, што і самі пункты, але са штрыхом. Плоскасць, на якой атрымліваецца праекцыя, называецца праемый. Прамая AA' называецца праецыруючым праменем. З яго дапамогай пункт A праецыруецца на плоскасць Π_1 .

Заўвага. Існуюць і іншыя абазначэнні праекцый пунктаў — A_1 , A_2 , A_3 , плоскасцей праекцый — H, V, W, а таксама π_1 , π_2 , π_3 (грэчаская малая літара π — пі).

Рыс. 17. Праецыраванне пункта


Рыс. 18. Праецыраванне адрэзкаў прамых

Разгледжаным спосабам могуць быць пабудаваны праекцыі ўсіх пунктаў любой фігуры. Так, каб атрымаць праекцыю A'B' адрэзка AB прамой (рыс. 18, a), неабходна правесці праецыруючыя прамені праз два пункты адрэзка — A і B. Пры гэтым, калі прамая або яе адрэзак супадаюць па напрамку з праецыруючым праменем (адрэзак CD на рыс. $18, \delta$), яны праецыруюцца на плоскасць праекцый у пункт. На відарысах праекцыі пунктаў, якія супадаюць, абазначаюць знакам \equiv , напрыклад: $C' \equiv D'$, як на рысунку $18, \delta$.

Для пабудовы праекцыі якой-небудзь фігуры неабходна праз яе пункты правесці ўяўныя праецыруючыя прамені да перасячэння іх з плоскасцю праекцый. Праекцыі ўсіх пунктаў фігуры на плоскасці і ўтвараюць праекцыю зададзенай фігуры.

Разгледзім, напрыклад, атрыманне праекцыі такой геаметрычнай фігуры, як трохвугольнік (рыс. 19).

Праекцыяй пункта A на зададзеную плоскасць Π_1 будзе пункт A' як вынік перасячэння праецыруючага праменя AA' з плоскасцю праекцый. Праекцыямі пунктаў B і C будуць пункты B' і C'. Злучыўшы на плоскасці пункты A', B' і C' адрэзкамі прамых, атрымаем фігуру A'B'C', якая і будзе праекцыяй зададзенай фігуры.

Рыс. 19. Праецыраванне фігуры

Далей пад тэрмінам *праекцыя* мы будзем разумець відарыє прадмета на плоскасці праекцый.

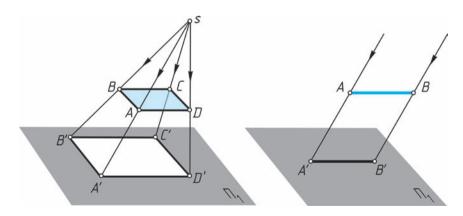
Слова «праекцыя» лацінскае. У перакладзе яно азначае «кідаць (адкідваць) наперад».

Пакладзіце на паперу які-небудзь плоскі прадмет і абвядзіце яго алоўкам. Вы атрымаеце відарыс, які адпавядае праекцыі гэтага прадмета. Прыкладамі праекцый з'яўляюцца фатаграфічныя здымкі, кінакадры і інш.

Відарысы прадметаў, атрыманыя шляхам праецыравання, будзем называць *праекцыйнымі*.

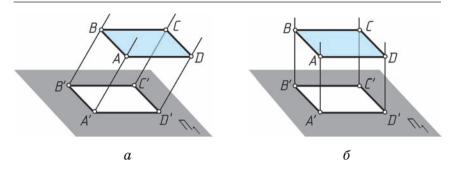
- ?
- 1. Што ўяўляе сабой праецыраванне?
- 2. Як пабудаваць на плоскасці праекцыю пункта? праекцыю фігуры?

12. У КТС прачытайце звесткі аб геаметрычных фігурах і целах.


6.2. Цэнтральнае і паралельнае праецыраванне. Калі праецыруючыя прамені, пры дапамозе якіх Правообладатель Национальный институт образования

будуецца праекцыя прадмета, выходзяць з аднаго пункта, праецыраванне называецца *цэнтральным* (рыс. 20). Пункт, з якога выходзяць прамені, называецца *цэнтрам праецыравання*. Атрыманая пры гэтым праекцыя — *цэнтральнай*.

Цэнтральную праекцыю часта называюць перспектыўнай. Прыкладамі цэнтральнай праекцыі з'яўляюцца фотаздымкі і кінакадры, цені, адкінутыя ад прадмета праменямі электрычнай лямпачкі, і інш. Цэнтральныя праекцыі прымяняюць пры рысаванні з натуры.


Калі праецыруючыя прамені паралельныя адзін аднаму (рыс. 21), то праецыраванне называецца *паралельным*, а атрыманая праекцыя — *паралельнай*. Паралельнай праекцыяй можна ўмоўна лічыць сонечныя цені прадметаў. Прыклады паралельнага праецыравання прыведзены на рысунках 18, *a* і 19.

Будаваць відарыє прадмета пры паралельным праецыраванні прасцей, чым пры цэнтральным.

Рыс. 20. Цэнтральнае праецыраванне

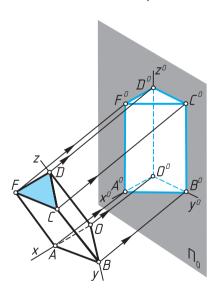
Рыс. 21. Паралельнае праецыраванне адрэзка

Рыс. 22. Паралельнае праецыраванне: a — косавугольнае; δ — прамавугольнае

Так, калі адрэзак AB (рыс. 21) або любая плоская фігура, як, напрыклад, на рысунку 22, паралельныя плоскасці праекцый, то іх праекцыі і самі праецыруемыя фігуры роўныя.

Пры паралельным праецыраванні ўсе прамені падаюць на плоскасць праекцый пад аднолькавым вуглом. Калі гэта любы вугал, які не роўны 90° , як на рысунку 22, a або на рысунку 18, a, то праецыраванне называецца косавугольным.

У тым выпадку, калі праецыруючыя прамені перпендыкулярныя да плоскасці праекцый (рыс. 22, б), г. зн. утвараюць з ёй вугал 90°, праецыраванне называецца *прамавугольным* (гл. рыс. 19). Атрыманая пры гэтым праекцыя называецца *прамавугольнай*. Прамавугольнае праецыраванне шырока выкарыстоўваецца пры пабудове відарысаў на чарцяжах.



- 1. Якое праецыраванне называецца цэнтральным? паралельным? косавугольным? прамавугольным?
- 2. Дайце абгрунтаванне, чаму будаваць відарыс у паралельнай праекцыі прасцей, чым у цэнтральнай.

6.3. Атрыманне аксанаметрычных праекцый. У тэхнічнай графіцы асобную групу складаюць праекцыі, атрыманыя шляхам паралельнага праецыравання прадмета разам з восямі x, y і z прасторавай сістэмы прамавугольных каардынат на адвольную плоскасць (рыс. 23). Абазначым яе Π_0 . Атрыманую такім чынам праекцыю на плоскасці Π_0 называюць аксанаметрычнай. У залежнасці ад напрамку праецыравання ў адносінах да плоскасці праекцый аксанаметрычныя праекцыі могуць быць як прамавугольнымі, так і косавугольнымі.

Слова «аксанаметрыя» — грэчаскае. У перакладзе яно азначае «вымярэнне па восях».

Праекцыі x^0 , y^0 і z^0 восей каардынат на плоскасці праекцый называюць **аксанаметрычнымі**. Калі будуюць аксанаметрычныя праекцыі прадметаў, то памеры адкладваюць па гэтых восях або паралельна ім.

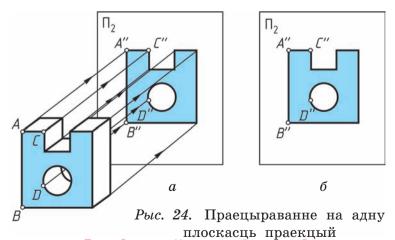
Рыс. 23. Атрыманне аксанаметрычнай праекцыі

Аксанаметрычныя праекцыі адносяць да ліку наглядных відарысаў. Па іх можна лёгка атрымаць агульнае ўяўленне аб знешняй форме прадмета.

Аднак на аксанаметрычных праекцыях прадметы атрымліваюцца са скажэннямі. Напрыклад, акружнасці праецыруюцца ў эліпсы, прамыя вуглы — у тупыя ці вострыя. Скажаюцца і некаторыя памеры прадмета. Таму такія праекцыі выкарыстоўваюць у асноўным пры выкананні тэхнічных рысункаў.

Для атрымання відарысаў на чарцяжах прымяняюць ме-

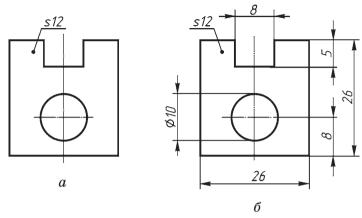
тад прамавугольнага праецыравання на адну, дзве і больш плоскасці праекцый.


- 1. Якія праекцыі называюць аксанаметрычнымі?
- 2. Якія аксанаметрычныя праекцыі атрымліваюцца ў залежнасці ад напрамку праецыравання?

13. У КТС знайдзіце дадатковую інфармацыю аб аксанаметрычных праекцыях.

§ 7. Чарцяжы ў сістэме прамавугольных праекцый

7.1. Прамавугольнае праецыраванне на адну плоскасць праекцый. Няхай неабходна пабудаваць прамавугольную праекцыю зададзенага прадмета (рыс. 24, a). Для гэтага выберам некаторую вертыкальную плоскасць праекцый такім чынам, каб яна была размешчана перад гледачом. Такую плоскасць называюць франтальнай (ад фр. frontal, што азначае «звернуты тварам да гледача»). Абазначым яе літарай Π з індэксам два — Π_2 . Будзем цяпер будаваць пра-



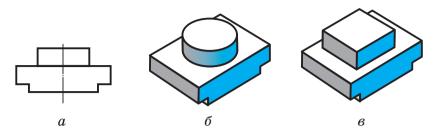
екцыю прадмета на гэту плоскасць, разглядаючы прадмет спераду. Для гэтага мысленна праз характэрныя пункты прадмета, напрыклад вяршыні A, B, C і інш., і пункты адтуліны правядзём праецыруючыя прамені, перпендыкулярныя да плоскасці праекцый Π_{2} . Адзначым пункты A'', B''. C'' перасячэння іх з плоскасцю Π_2 і злучым прамымі, а пункты акружнасці — крывой лініяй. Мы атрымалі праекцыю прадмета на плоскасці Π_2 (рыс. 24, δ).

Заўважце, што прадмет быў размешчаны перад плоскасцю праекцый так, што дзве яго грані — пярэдняя і задняя — аказаліся паралельнымі гэтай плоскасці і спраецыраваліся на яе без скажэння. Іншыя грані, напрыклад перпендыкулярныя да плоскасці праекцый, спраецыраваліся ў выглядзе ліній.

Па атрыманай праекцыі мы зможам меркаваць толькі аб двух вымярэннях прадмета — вышыні і шырыні, аб дыяметры адтуліны, іншых элементах. А якая таўшчыня прадмета? Карыстаючыся атрыманай праекцыяй, мы гэтага сказаць не можам. Значыць, адна праекцыя не выяўляе трэцяга вымярэння прадмета. Каб па такім відарысе можна было поўнасцю меркаваць аб велічыні дэталі, яго дапаўняюць запісам таўшчыні (s) дэталі (рыс. 25, а). Так дзейнічаюць, калі прадмет мае простую форму, не ўтрымлівае выступаў, упадзін і інш., г. зн. яго ўмоўна можна назваць «плоскім».

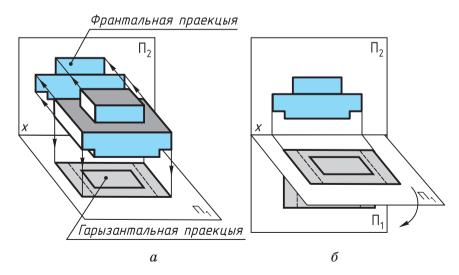
Абазначыўшы іншыя памеры, мы будзем мець чарцёж прадмета, які ўтрымлівае адну прамавугольную праекцыю (рыс. 25, б). Межы плоскасці праекцый пры гэтым не паказваюць. Правообладатель Национальный институт образования

Рыс. 25. Чарцёж дэталі


Праекцыі, на якіх вышыні розных частак аб'екта паказаны лікам, называюць *праекцыямі з лікавымі адзна-камі*. З імі вы ўжо сустракаліся на ўроках «Чалавек і свет» і «Геаграфія».

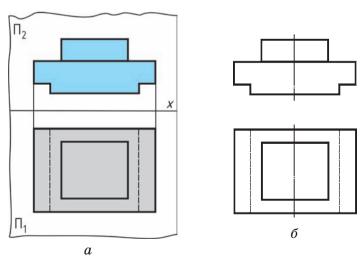
- 1. Якую плоскасць праекцый называюць франтальнай? Як яе абазначаюць?
- 2. Для чаго выкарыстоўваюцца праекцыі з лікавымі адзнакамі?

7.2. Прамавугольнае праецыраванне на дзве плоскасці праекцый. Адна праекцыя не заўсёды адназначна вызначае геаметрычную форму прадмета. Напрыклад, па адной праекцыі, паказанай на рысунку 26, а, можна ўявіць прадметы такімі, якімі яны паказаны на рысунку 26, б і в. Можна мысленна падабраць і іншыя прадметы, якія таксама будуць мець сваёй праекцыяй відарыс, дадзены на рысунку 26, а. Акрамя таго, на такім відарысе не адлюстравана трэцяе вымярэнне прадмета.


Усіх гэтых недахопаў можна пазбегнуць, калі пабудаваць не адну, а дзве прамавугольныя пра-

Рыс. 26. Неакрэсленасць формы прадмета на відарысе

екцыі прадмета на дзве ўзаемна перпендыкулярныя плоскасці (рыс. 27, a): франтальную Π_2 і гарызантальную Π_1 .


Каб атрымаць праекцыю на франтальнай плоскасці Π_2 , прадмет разглядаюць спераду, а на гарызантальнай плоскасці Π_1 — зверху. Праекцыю на плоскасці Π_2 называюць франтальнай, на плоскасці Π_1 — гарызантальнай. Лінію перасячэння гэтых плоскасцей (яна абазначана x) называюць воссю праекцый.

Рыс. 27. Праецыраванне на дзве плоскасці праекцый Правообладатель Национальный институт образования

Пабудаваныя праекцыі размешчаны ў прасторы ў розных плоскасцях (гарызантальнай і вертыкальнай). Відарысы ж прадмета звычайна выконваюць на адным лісце, г. зн. у адной плоскасці. Таму для атрымання чарцяжа прадмета абедзве плоскасці сумяшчаюць у адну (рыс. 27, δ). Для гэтага паварочваюць гарызантальную плоскасць праекцый вакол восі x уніз на 90° так, каб яна супала з вертыкальнай плоскасцю. Абедзве праекцыі будуць размешчаны ў адной плоскасці (рыс. 28).

На сумешчаных плоскасцях франтальная і гарызантальная праекцыі прадмета размяшчаюцца ў праекцыйнай сувязі, г. зн. гарызантальная праекцыя будзе знаходзіцца дакладна пад франтальнай (рыс. 28, а). Прамая, якая злучае (г. зн. звязвае) на чарцяжы дзве праекцыі аднаго і таго ж пункта, называецца лініяй сувязі. Так, франтальныя і гарызантальныя праекцыі пунктаў звязаны паміж сабой вертыкальнымі лініямі

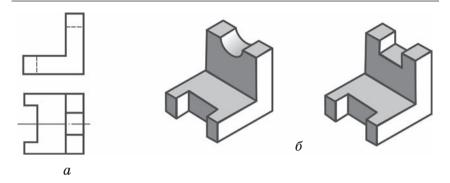
Рыс. 28. Дзве праекцыі прадмета Правообладатель Национальный институт образования

сувязі. На рысунку 28, *а* такія лініі для прыкладу прыведзены толькі для пунктаў крайніх граней прадмета.

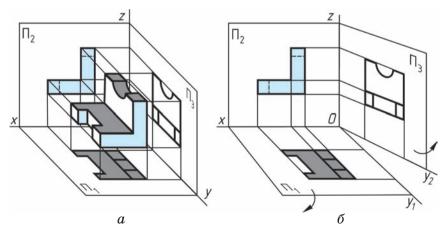
Межы плоскасцей праекцый на чарцяжы можна не паказваць, не наносяць таксама і праекцыі праецыруючых праменяў і лінію перасячэння плоскасцей праекцый, г. зн. вось праекцый (рыс. 28, б), калі ў гэтым няма неабходнасці.

Звярніце ўвагу, што ніжні выступ прадмета нябачны на гарызантальнай праекцыі, таму ён паказаны штрыхавымі лініямі.

Спосаб прамавугольнага праецыравання на дзве ўзаемна перпендыкулярныя плоскасці быў распрацаваны французскім вучоным-геаметрам Гаспарам Монжам у канцы XVIII ст. Таму такі спосаб часта называюць метадам Монжа.


Гаспар Монж паклаў пачатак развіццю навукі аб паказе прадметаў — *начартальнай геаметрыі*. Начартальная геаметрыя з'яўляецца тэарэтычнай асновай чарчэння.

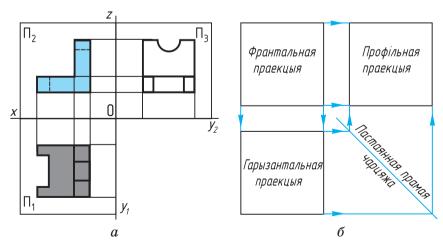
- 1. Ці заўсёды на чарцяжы дастаткова адной праекцыі прадмета?
- 2. Як называюцца плоскасці праекцый Π_1 і Π_2 ?
- 3. Як называюцца праекцыі, атрыманыя пры праецыраванні прадмета на дзве плоскасці праекцый? Як павінны размяшчацца гэтыя плоскасці адна адносна другой?


- **14.** Знайдзіце ў Інтэрнэце біяграфічныя даныя аб Гаспары Монжы.
- 7.3. Прамавугольнае праецыраванне на тры плоскасці праекцый. Разгледзім яшчэ адзін прыклад. Па чарцяжы на рысунку 29, а мы з лёгкасцю можам уявіць агульную форму дэталі. Але форма выемкі ў вертыкальнай частцы за-

Рыс. 29. Неакрэсленасць формы прадмета на відарысе

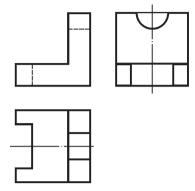
стаецца нявыяўленай (рыс. 29, δ). Каб убачыць форму выемкі, трэба пабудаваць праекцыю яшчэ на адну плоскасць. Яе размяшчаюць перпендыкулярна да плоскасцей праекый Π_1 і Π_2 (рыс. 30, a) і абазначаюць літарай Π_3 .

Трэцюю плоскасць праекцый называюць *профільнай*, а атрыманую на ёй праекцыю — *профільнай* праекцыяй прадмета (ад фр. *profil*, што азначае «выгляд збоку»). Праецыруемы прадмет размяшчаюць у прасторы трохграннага вугла,



Рыс. 30. Праецыраванне на тры плоскасці праекцый Правообладатель Национальный институт образования

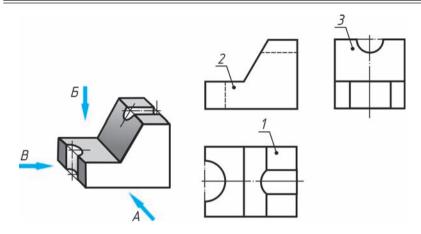
утворанага плоскасцямі Π_1 , Π_2 і Π_3 , і разглядаюць з трох бакоў — спераду, зверху і злева. Праз характэрныя пункты прадмета праводзяць праецыруючыя прамені да перасячэння з плоскасцямі праекцый. Пункты перасячэння злучаюць прамымі або крывымі лініямі. Атрыманыя фігуры будуць праекцыямі прадмета на плоскасцях Π_1 , Π_2 і Π_3 .


Профільная плоскасць праекцый — вертыкальная. Яна перпендыкулярная адначасова да гарызантальнай і франтальнай плоскасцей праекцый. У месцы перасячэння з плоскасцю Π_1 яна ўтварае вось y, а з плоскасцю Π_2 — вось z.

Для атрымання чарцяжа прадмета плоскасць Π_3 паварочваюць на 90° управа, а плоскасць Π_1 — на 90° уніз (рыс. $30, \delta$). Атрыманы такім чынам чарцёж змяшчае тры прамавугольныя праекцыі прадмета: франтальную, гарызантальную і профільную (рыс. 31, a). Лініі сувязі на рысунку 31, a паказаны толькі для пунктаў, якія ляжаць на крайніх гранях прадмета.

Рыс. 31. Тры праекцыі прадмета Правообладатель Национальный институт образования

На рысунку 31, б дадзена спрошчаная схема размяшчэння трох праекцый на чарцяжы. Са схемы відаць, што профільную праекцыю размяшчаюць у праекцыйнай сувязі з франтальнай праекцыяй справа ад яе. Лініі, якія звязваюць адны і тыя ж пункты франтальнай і профільнай праекцый, г. зн. лініі сувязі гэтых праекцый, — гарызантальныя.


Рыс. 32. Чарцёж прадмета

Пры правядзенні ліній сувязі паміж гарызантальнай і профільнай праекцыямі выкарыстоўваюць прамую, размешчаную пад вуглом 45° да любой вертыкальнай або гарызантальнай лініі на чарцяжы або рамкі чарцяжа. Яе называюць пастаяннай прамой чарцяжа.

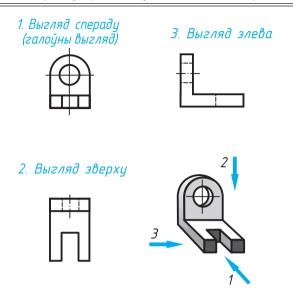
Рысунак 32 змяшчае чарцёж паказанага намі прадмета. Чарцёж складаецца з трох пабудаваных праекцый. Восі праекцый і лініі сувязі на чарцяжы не паказаны.

Чарцёж, які складаецца з некалькіх прамавугольных праекцый, называюць чарцяжом у сістэме прамавугольных праекцый, ці комплексным. У залежнасці ад складанасці геаметрычнай формы прадмета на чарцяжы ён можа быць паказаны адной, дзвюма і больш праекцыямі. Умовімся чарцёж у сістэме прамавугольных праекцый называць проста чарцяжом.

- ?
- 1. Якую праекцыю называюць профільнай?
- 2. Як называюць чарцёж, які складаецца з некалькіх прамавугольных праекцый?

Рыс. 33. Заданне для практыкаванняў

15. У КТС прачытайце матэрыял «Паказ пункта на чарцяжы». 16. На рысунку 33 змешчаны наглядны відарыс і комплексны чарцёж дэталі — вугольніка. На наглядным відарысе стрэлкамі паказаны напрамкі праецыравання. Праекцыі дэталі абазначаны лічбамі: 1, 2, 3. Вам трэба, не перачэрчваючы чарцёж, запісаць у рабочым сшытку:


- 1) якой праекцыі (абазначанай лічбай) адпавядае кожны напрамак праецыравання (абазначаны літарай);
 - назвы праекцый 1, 2 і 3.

§ 8. Пабудова відарысаў прадметаў на тэхнічных чарцяжах

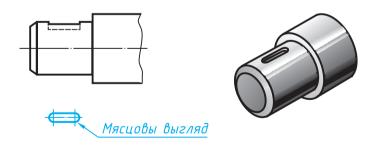
8.1. Асноўныя выгляды. Згодна са стандартам АСКД відарысы на тэхнічных чарцяжах, якія былі атрыманы па метадзе прамавугольнага праецыравання, называюць выглядамі.

Выгляд — гэта відарыс павернутай да назіральніка бачнай часткі паверхні прадмета.

Вызначаюцца наступныя назвы выглядаў, атрыманых на асноўных плоскасцях праекцый (рыс. 34): Правообладатель Национальный институт образования

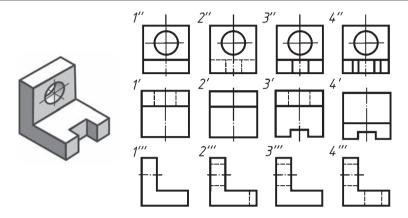
Рыс. 34. Размяшчэнне і назвы выглядаў дэталі

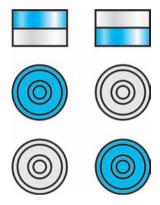
1 — выгляд спераду (або галоўны выгляд) — на франтальнай плоскасці; 2 — выгляд зверху — на гарызантальнай плоскасці; 3 — выгляд злева — на профільнай плоскасці. Могуць быць пабудаваны выгляды справа, знізу і ззаду. Выгляд спераду з'яўляецца асноўным. Пад ім размешчаны выгляд зверху. Справа ад галоўнага выгляду і на адной з ім вышыні — выгляд злева. Назвы выглядаў на чарцяжы не падпісваюць.


Колькасць выглядаў, іншых відарысаў на чарцяжы павінна быць найменшай, але дастатковай для поўнага выяўлення формы прадметаў. Выкарыстанне знакаў, розных умоўнасцей, надпісаў дазваляе паменшыць колькасць відарысаў. Для гэтага на выглядах дапускаецца, напрыклад, паказваць пры дапамозе штрыхавых ліній нябачныя часткі прадмета.

- 1. Дайце азначэнне выгляду. Пералічыце назвы выглядаў.
- 2. Як вы лічыце, колькі відарысаў павінна быць на чарцяжы?
- 3. З якой мэтай на чарцяжах выкарыстоўваюць умоўныя знакі, надпісы? Прывядзіце прыклады.
- **8.2. Мясцовыя выгляды.** У некаторых выпадках на чарцяжы замест поўнага выгляду можна паказаць яго частку. Гэта спрашчае пабудову відарыса прадмета.

Відарыс асобнага, абмежаванага месца паверхні прадмета называецца *мясцовым выглядам*. Яго прымяняюць у тым выпадку, калі трэба паказаць форму і памеры асобных элементаў дэталі, напрыклад шпоначнай канаўкі (рыс. 35) і інш.


Мясцовы выгляд можа быць абмежаваны лініяй абрыву, воссю сіметрыі і г. д. Размяшчаюць мясцовы выгляд або ў праекцыйнай сувязі з іншымі відарысамі (гл. рыс. 35), або на свабодным полі чарцяжа. У апошнім выпадку яго абазначаюць літарай рускага алфавіта.


Рыс. 35. Мясцовы выгляд дэталі

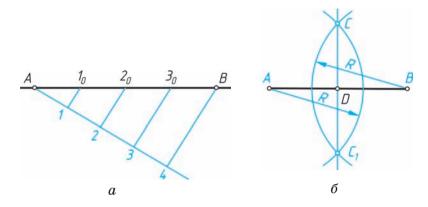
17. На рысунку 36 паказаны хаатычна размешчаныя відарысы дэталі: у адным радзе — галоўныя выгляды, у другім — Правообладатель Национальный институт образования

Рыс. 36. Заданне для практыкаванняў

Рыс. 37. Займальныя задачы

выгляды зверху, у трэцім — выгляды злева. З чатырох відарысаў у радзе толькі адзін адпавядае дадзенай дэталі. Знайдзіце правільныя выгляды па наяўных нумарах.

18. На стале ляжаць шашкі, як паказана на рысунку 37. Палічыце па чарцяжы, колькі шашак знаходзіцца ў першых, бліжэйшых да вас, слупках. Колькі ўсяго шашак ляжыць на стале? Калі вам цяжка злічыць іх па чарцяжы, паспрабуйце спачатку скласці шашкі ў слупкі, карыстаючыся чарцяжом. А зараз паспрабуйце правільна адказаць на пытанні.


III. ГЕАМЕТРЫЧНЫЯ ПАБУДОВЫ ПРЫ ВЫКАНАННІ ЧАРЦЯЖОЎ

§ 9. Дзяленне адрэзкаў і акружнасцей на роўныя часткі

Найпрасцейшыя графічныя пабудовы выконваюцца з дапамогай чарцёжных інструментаў. У матэматыцы такія пабудовы называюць геаметрычнымі. Прыкладамі такіх пабудоў могуць быць задачы на правядзенне паралельных і ўзаемна перпендыкулярных прамых, дзяленне адрэзкаў, вуглоў і акружнасцей на роўныя часткі і інш. Шырокія магчымасці для графічных пабудоў адкрыліся са з'яўленнем камп'ютараў.

Адны і тыя ж графічныя пабудовы могуць быць выкананы рознымі прыёмамі і з дапамогай розных інструментаў. Разгледзім некаторыя прыёмы.

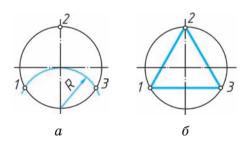
9.1. Дзяленне адрэзкаў і пабудова вуглоў. Каб падзяліць адрэзак АВ на некалькі роўных частак, з яго канца, напрыклад з пункта A, праводзяць пад любым вуглом да адрэзка адвольнай даўжыні прамую (рыс. 38, а). З пункта A па ёй адкладваюць цыркулем або лінейкай столькі роўных частак, на колькі трэба падзяліць адрэзак, напрыклад чатыры. Злучаюць пункт 4 з пунктам B прамой і праводзяць паралельныя ёй іншыя прамыя праз пункты 3, 2, 1. Атрыманыя пункты 1_0 , 2_0 , 3_0 падзяляюць адрэзак AB на чатыры роўныя часткі. Правообладатель Национальный институт образования

Рыс. 38. Дзяленне адрэзкаў

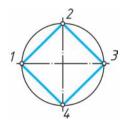
Падзяліць адрэзак на дзве роўныя часткі можна з дапамогай цыркуля і лінейкі (рыс. 38, 6). Для гэтага з пунктаў A і B радыусам большым за палавіну адрэзка праводзяць дугі да іх узаемнага перасячэння ў пунктах C і C_1 . Злучыўшы гэтыя пункты прамой, атрымаем на перасячэнні яе з адрэзкам AB пункт D, які з'яўляецца сярэдзінай зададзенага адрэзка.

Пабудову розных вуглоў, напрыклад у 45°, 60°, лепш выконваць з дапамогай вугольнікаў. Але будаваць вуглы, як і дзяліць іх на роўныя часткі, можна і з дапамогай іншых інструментаў. Такія графічныя пабудовы разглядаюцца ў геаметрыі.

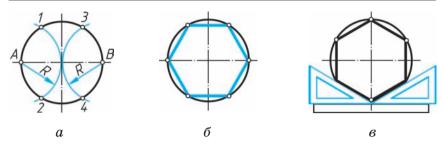
- 1. Якія графічныя пабудовы неабходна выканаць, каб падзяліць адрэзак на некалькі роўных частак?
- 2. Якія вуглы можна пабудаваць з дапамогай вугольнікаў?


- **19.** У рабочым сшытку падзяліце адрэзак, роўны 60 мм, у адносінах 2:1. Якой даўжыні атрымаліся адрэзкі?
- **20.** 3 дапамогай вугольнікаў пабудуйце вуглы ў 45°, 60°, 30°, 90°, 120°, 150° (гл. дадатак 10).

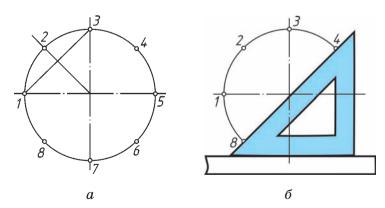
9.2. Дзяленне акружнасці на роўныя часткі. Некаторыя дэталі маюць раўнамерна размешчаныя акружнасці або іншыя элементы, для пабудовы якіх трэба падзяліць зададзеную акружнасць на роўныя часткі.


Для таго каб падзяліць акружнасць на mры роўныя часткі, трэба прыняць за цэнтр пункт перасячэння акружнасці з адным з дыяметраў і правесці з яго дугу, радыус якой R роўны радыусу паказанай акружнасці (рыс. 39, a). Атрыманыя пункты 1 і 3 разам з пунктам 2 падзяляюць зададзеную акружнасць на тры роўныя часткі. Злучыўшы пункты 1, 2 і 3 прамымі, атрымаем упісаны трохвугольнік (рыс. 39, 6).

Два ўзаемна перпендыкулярныя дыяметры дзеляць акружнасць на *чатыры* роўныя часткі. Злучыўшы пункты 1, 2, 3 і 4 прамымі (рыс. 40), атрымаем упісаны чатырохвугольнік.

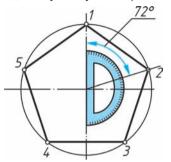

На шэсць роўных частак акружнасць дзеляць наступным чынам. Прыняўшы за цэнтры дуг пункты перасячэння аднаго з дыяметраў з акружнасцю — A і B, праводзяць дзве дугі радыусам R, роўным радыусу паказанай акружнасці (рыс. 41, a). Гэтыя дугі перасякаюць акружнасць у чатырох

Рыс. 39. Дзяленне акружнасці на тры часткі


Рыс. 40. Дзяленне акружнасці на чатыры часткі

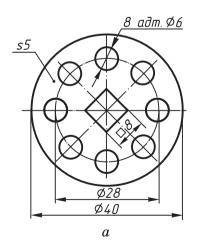
Рыс. 41. Дзяленне акружнасці на шэсць частак

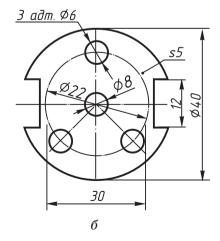
пунктах 1, 2, 3 і 4. Разам з пунктамі A і B яны падзяляюць акружнасць на шэсць роўных частак (рыс. 41, δ). Тую ж задачу можна рашыць з дапамогай вугольніка з вугламі 30° і 60° і лінейкі (рыс. 41, δ).


На рысунку 42, a паказана дзяленне акружнасці на восем роўных частак. Для гэтага дугі 1-3, 3-5 і інш. дзеляць папалам пунктамі 2, 4 і г. д. або дзеляць на дзве роўныя часткі адрэзкі 1-3, 3-5 і г. д. Можна зрабіць і так: правесці праз цэнтр акружнасці дзве пары ўзаемна перпендыкулярных дыяметраў (рыс. 42, 6).

Рыс. 42. Дзяленне акружнасці на восем частак

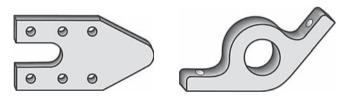
На *пяць* роўных частак акружнасць можна падзяліць з дапамогай транспарціра (рыс. 43). Пятай частцы акружнасці адпавядае вугал у 72° (360° : $5 = 72^{\circ}$).



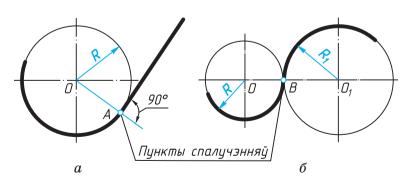

Рыс. 43. Дзяленне акружнасці на пяць частак

- ?
- 1. Як падзяліць акружнасць на тры, чатыры, шэсць і восем роўных частак?
- 2. З дапамогай якіх інструментаў і як можна падзяліць акружнасць на пяць роўных частак?

21. Перачарціце ў маштабе 2:1 відарысы дэталей «пласціна» (рыс. 44, *a* і *б*), прымяняючы правілы дзялення акружнасці на роўныя часткі. Памеры можна не прастаўляць.



Рыс. 44. Заданне для практыкаванняў Правообладатель Национальный институт образования


22. Выкарыстоўваючы веды па выяўленчым мастацтве, пабудуйце ў «палосцы» або ў «крузе» арнамент, прымяняючы розныя графічныя пабудовы. Размалюйце арнамент.

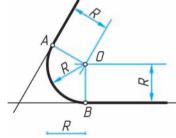
§ 10. Пабудова спалучэнняў ліній

Контуры шматлікіх дэталей (рыс. 45) маюць плаўныя пераходы адной лініі ў іншую — крывой у прамую, адной крывой у іншую і г. д. Такія плаўныя пераходы называюць спалучэннямі. Пункты, у якіх адна лінія пераходзіць у іншую, называюць пунктамі спалучэнняў (пункты A і B на рыс. 46). Цэнтры, з якіх праводзяць дугі для пабудовы спалучэнняў, называюць цэнтрамі спалучэнняў. Радыус дугі, з дапамогай якой ажыццяўляюць пабудову спалучэння, называюць радыцсам спалучэння.

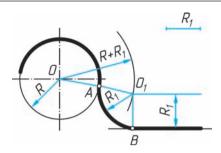
Рыс. 45. Дэталі з плаўнымі пераходамі

Рыс. 46. Спалучэнне ліній Правообладатель Национальный институт образования

Разгледзім некаторыя прыклады.


Для пабудовы спалучэння дзвюх прамых ліній, якія перасякаюцца пад любым вуглом (рыс. 47), неабходна выканаць наступныя пабудовы.

1. З найсці цэнтр спалучэнн я — пункт O. Ён знаходзіцца на адлегласці радыуса спалучэння (R) ад зададзеных прамых і з'яўляецца пунктам перасячэння дзвюх прамых, праведзеных паралельна зададзеным прамым.


У пункце перасячэння гэтых прамых і знаходзіцца цэнтр спалучэння O. Велічыня радыуса R задаецца ва ўмове задачы.

- $2.\ 3$ найсці пункты спалучэння. Для гэтага праводзяць перпендыкуляры з цэнтра спалучэння O да зададзеных прамых. Атрыманыя пункты A і B з'яўляюцца пунктамі спалучэнняў.
- 3. Правесці дугу зададзенага рады уса паміж пунктамі спалучэнняў A і B, паставіўшы апорную ножку цыркуля ў пункт O.

Пры пабудове спалучэнняў варта мець на ўвазе, што пераход ад прамой да акружнасці будзе плаўным у тым выпадку, калі прамая датыкаецца да акружнасці (рыс. 46, a). Пункт спалучэння A ляжыць на радыусе, перпендыкулярным да гэтай прамой.

Рыс. 47. Спалучэнне дзвюх прамых, якія перасякаюцца Правообладатель Национальный институт образования

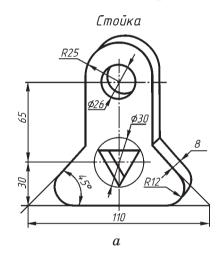
Рыс. 48. Спалучэнне акружнасці і прамой

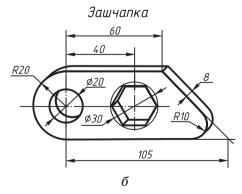
Пераход ад адной акружнасці да іншай будзе плаўным, калі акружнасці датыкаюцца адна да адной. Пункт спалучэння B знаходзіцца на прамой, якая злучае іх цэнтры (рыс. $46, \delta$).

Спалучэнне акружнасці і прамой пры зададзеным радыусе спалучэння R_1 выконваюць наступным чынам (рыс. 48).

- 1. З цэнтра акружнасці пункта O праводзяць дугу дапаможнай акружнасці радыусам $R+R_1$.
- 2. Праводзяць на адлегласці R_1 ад зададзенай прамой паралельную ёй прамую да перасячэння з дугой радыуса $R+R_1$ у пункце O_1 . Пункт O_1 будзе цэнтрам спалучэння.
- 3. Злучаюць прамой пункты O і O_1 , г. зн. цэнтры акружнасці і спалучальнай дугі, атрымліваюць пункт спалучэння A. Вызначаюць другі пункт спалучэння B, правёўшы з пункта O_1 перпендыкуляр да прамой.
- 4. З цэнтра спалучэння O_1 дугой радыуса R_1 злучаюць пункты спалучэння A і B і атрымліваюць плаўны пераход ад акружнасці да прамой.

Выконваючы чарцёж, варта вызначаць паслядоўнасць геаметрычных пабудоў. Такі працэс называюць **аналізам графічнага складу відарысаў**.

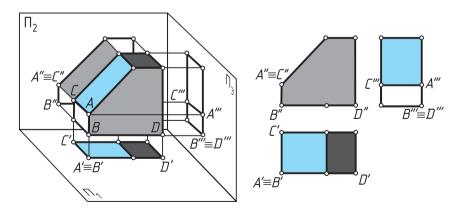



- 1. Што разумеюць пад спалучэннем ліній?
- 2. Назавіце графічныя пабудовы, якія неабходна выканаць для пабудовы спалучэнняў дзвюх прамых, прамой з акружнасцю.

ΓΡ 2

Чарцёж дэталі

Па наглядным відарысе (рыс. 49, *a* і *б*) пабудуйце чарцёж адной з дэталей з прымяненнем спалучэнняў. Нанясіце памеры.


Рыс. 49. Заданне да графічнай работы № 2 Правообладатель Национальный институт образования

IV. ЧАРЦЯЖЫ, ТЭХНІЧНЫЯ РЫСУНКІ І ЭСКІЗЫ ПРАДМЕТАЎ

§ 11. Пабудова праекцый некаторых элементаў фігур на чарцяжах

Любы графічны відарыє прадмета складаецца з пунктаў, прамых або крывых ліній. Кожны пункт або лінія на чарцяжы з'яўляецца праекцыяй таго або іншага элемента прадмета: вяршыні, канта, грані і г. д. Таму адлюстраванне прадмета зводзіцца да адлюстравання яго элементаў.

11.1. Паказ вяршынь. Размесцім прадмет так, каб кожная з дзвюх паралельных паміж сабой граней была паралельная адной з плоскасцей праекцый (рыс. 50). Правядзём праз вяршыні прадмета праецыруючыя прамені, перпендыкулярныя да плоскасцей праекцый, і адзначым пункты перасячэння іх з плоскасцямі Π_1 , Π_2 і Π_3 .

Рыс. 50. Праекцыі элементаў прадмета Правообладатель Национальный институт образования

З рысунка 50 відаць, што на адным праецыруючым прамені аказалася па дзве вяршыні, таму іх праекцыі зліліся ў адзін пункт. Так, вяршыні A і B ляжаць на адным прамені, перпендыкулярным да плоскасці Π_1 . Іх гарызантальныя праекцыі A' і B' супалі. Вяршыні A і C ляжаць на адным прамені, які праецыруе гэтыя пункты на плоскасць Π_2 . Іх франтальныя праекцыі A'' і C'' таксама супалі. На профільнай плоскасці праекцый Π_3 у адзін пункт — $B''' \equiv D'''$ — спраецыраваліся дзве вяршыні — B і D.

З двух сумешчаных на відарысе пунктаў адзін з'яўляецца відарысам бачнай вяршыні, другі — закрытай (нябачнай). На гарызантальнай праекцыі будзе бачнай тая вяршыня, якая размешчана ў прасторы вышэй. Так, вяршыня A — бачная, вяршыня B — нябачная. На франтальнай праекцыі бачнай будзе тая вяршыня, якая знаходзіцца бліжэй да нас. Адсюль A'' — відарыс бачнай вяршыні A, C'' — відарыс нябачнай вяршыні C, яна закрываецца пры праецыраванні вяршыняй A. На відарысе абазначэнні праекцый бачных пунктаў ставяць першымі.

- 1. У якім выпадку супадаюць праекцыі пунктаў на відарысе прадмета?
- 2. Які з двух пунктаў, праекцыі якіх на гарызантальнай плоскасці супалі, будзе бачным?
- 11.2. Паказ кантаў. Злучыўшы парамі пункты на франтальнай, гарызантальнай і профільнай праекцыях, атрымаем відарысы кантаў прадмета. Напрыклад, A'C' гарызантальная праекцыя канта AC, A''B'' франтальная праекцыя канта AB.

На рысунку 50 відаць, што калі кант паралельны плоскасці праекцый, то ён на гэтай плоскасці паказваецца без скажэння, або, як кажуць, у сапраўдную (натуральную) велічыню. У гэтым выпадку праекцыя канта і сам кант роўныя паміж сабой. Напрыклад, праекцыя A''B'' — сапраўдная велічыня канта AB на франтальнай, а праекцыя A'''B''' — на профільнай плоскасці праекцый.

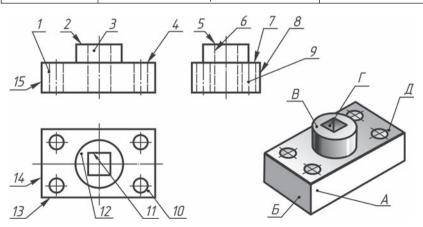
Калі кант перпендыкулярны да плоскасці праекцый, ён праецыруецца ў пункт. Так, на франтальную плоскасць праекцый у пункт спраецыраваўся кант AC, на гарызантальную плоскасць кант AB, на профільную — кант BD і г. д.

Такім чынам, кожны пункт на чарцяжы — гэта праекцыя вяршыні прадмета або праекцыя канта, перпендыкулярнага да плоскасці праекцый.

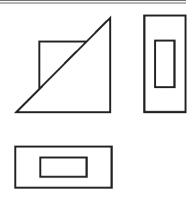
- У якім выпадку адрэзак прамой (кант) праецыруецца ў сапраўдную велічыню? у пункт?
- 11.3. Паказ граней. Пабудаваўшы праекцыі кантаў, бачым, што на відарысе яны абмяжоўваюць праекцыі граней. Як і кант, грань, паралельная плоскасці праекцый, праецыруецца на яе без скажэння. Напрыклад, на профільную плоскасць праекцый без скажэння спраецыравалася грань, на якой ляжаць пункты A, B, C. На гарызантальную плоскасць праекцый спраецыраваліся без скажэння ніжняя і верхняя грані і г. д. Знайдзіце гэтыя грані на чарцяжы прадмета самастойна.

Калі грань перпендыкулярная да плоскасці праекцый, яна праецыруецца на яе ў адрэзак прамой. Правообладатель Национальный институт образования Такім чынам, кожны адрэзак прамой на відарысе — гэта праекцыя канта або праекцыя плоскасці, перпендыкулярнай да плоскасці праекцый. Канты і грані прадмета, нахіленыя да плоскасці праекцый, праецыруюцца на яе са скажэннем. Знайдзіце такія канты і грань на рысунку 50.

Варта памятаць, што кожная праекцыя прадмета — гэта відарыс усяго прадмета, а не толькі аднаго яго боку.


У якім выпадку грань (частка плоскасці) праецыруецца ў адрэзак прамой? У якім выпадку яна праецыруецца ў сапраўдную велічыню?

23*. На рысунку 51 дадзены чарцёж і тэхнічны рысунак дэталі — накрыўкі.


Запішыце, якія літарныя абазначэнні элементаў дэталі на рысунку адпавядаюць лічбавым абазначэнням гэтых жа элементаў на чарцяжы. Адказы запішыце па наступнай форме:

Рысунак	Чарцёж		
	галоўны выгляд	выгляд зверху	выгляд злева
A	1	13	8

Рыс. 51. Заданне для практыкаванняў Правообладатель Национальный институт образования

- **24***. Па зададзеным чарцяжы прадмета (рыс. 52) вызначце:
- 1) колькі вяршынь мае паказаны прадмет;
 - 2) колькі ў яго кантаў і граней;
- 3) колькі ў прадмета кантаў і граней, паралельных гарызантальнай плоскасці праекцый (знайдзіце іх на праекцыях);
- 4) колькі ў прадмета кантаў і граней, перпендыкулярных да гарызантальнай плоскасці праекцый (знайдзіце іх на відарысе).

Рыс. 52. Заданне для практыкаванняў

У к а з а н н і. Можаце выкарыстаць абазначэнні вяршынь. Глядзіце таксама рысунак 50. Калі ўзнікнуць цяжкасці пры выкананні задання, нарысуйце гэты прадмет.

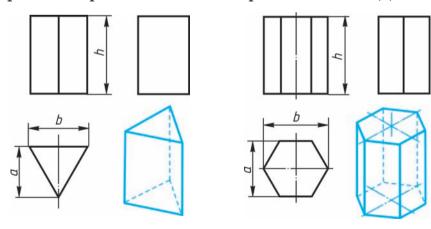
§ 12. Прамавугольныя праекцыі мнагаграннікаў і цел вярчэння

12.1. Агульныя звесткі. *Мнагаграннікам* называюць цела, паверхня якога складаецца з плоскіх многавугольнікаў. Гэта куб, прызма, паралелепіпед, піраміда і інш.

Асобныя целы могуць быць атрыманы шляхам вярчэння прамой або крывой лініі (утваральнай) вакол якой-небудзь нерухомай лініі (восі), якая ляжыць у той жа плоскасці. Гэта — целы вярчэння. Прыкладамі іх з'яўляюцца цыліндр, конус, сфера і інш.

Паколькі форма большасці прадметаў уяўляе сабой спалучэнне розных геаметрычных цел або іх частак, то для пабудовы чарцяжоў гэтых прадметаў неабходна ведаць, як на ім паказваецца

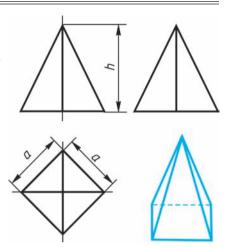
кожнае геаметрычнае цела. Таму разгледзім спачатку пабудову чарцяжоў простых цел. Гэта тым больш неабходна, бо ў складанай форме любога прадмета заўсёды можна вылучыць простыя геаметрычныя целы, якія дапамагаюць уявіць форму прадмета па яго чарцяжы.



Якія целы называюць мнагаграннікамі? целамі вярчэння?

25. Паўтарыце па КТС матэрыял аб мнагагранніках і целах вярчэння.

12.2. Паказ мнагаграннікаў. Разгледзім пабудову прамавугольных праекцый прызмы. Для прыкладу возьмем трохвугольную (рыс. 53) і шасцівугольную (рыс. 54) прызмы. Іх асновы, паралельныя гарызантальнай плоскасці праекцый, паказваюцца на ёй у натуральную велічыню, а на франтальнай і профільнай плоскасцях — адрэзкамі прамых. Бакавыя грані паказваюцца без



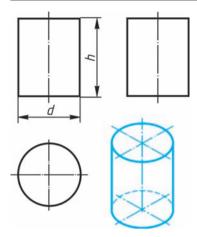
Рыс. 53. Праекцыі трохвугольнай прызмы

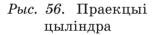
Рыс. 54. Праекцыі шасцівугольнай прызмы

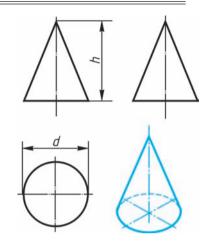
скажэння на тых плоскасцях праекцый, якім яны паралельныя, і ў выглядзе адрэзкаў прамых — на тых, да якіх перпендыкулярныя. Грані, нахіленыя да плоскасцей, паказваюцца на іх скажонымі.

Памеры прызм вызначаюцца іх вышынямі і памерамі фігур асновы. Штрыхпункцірнымі лініямі на чарцяжы паказаны восі сіметрыі.

Рыс. 55. Праекцыі піраміды

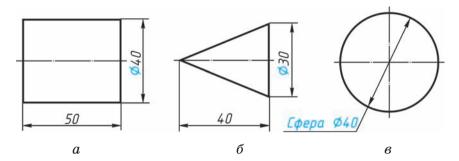

Разгледзім, як паказваюць на чарцяжы правільную чатырохвугольную піраміду (рыс. 55). Аснова піраміды праецыруецца на гарызантальную плоскасць праекцый у натуральную велічыню. На ёй дыяганалямі паказваюцца праекцыі бакавых кантаў, якія ідуць ад вяршынь асновы да вяршыні піраміды.


Франтальная і профільная праекцыі піраміды — раўнабедраныя трохвугольнікі.


Памеры піраміды вызначаюцца даўжынёй a дзвюх старон яе асновы і вышынёй h.

Якія фігуры з'яўляюцца праекцыямі прызмы? піраміды?

12.3. Паказ цел вярчэння. Калі кругі, якія ляжаць у асновах цыліндра і конуса, размешчаны паралельна гарызантальнай плоскасці праекцый, іх праекцыі на гэту плоскасць будуць таксама кругамі (рыс. 56 і 57).


Рыс. 57. Праекцыі конуса

Франтальная і профільная праекцыі цыліндра ў гэтым выпадку — прамавугольнікі, а конуса — раўнабедраныя трохвугольнікі.

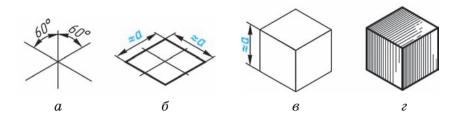
На ўсіх праекцыях варта наносіць восі сіметрыі, з правядзення якіх і пачынаюць выкананне чарцяжоў цыліндра і конуса.

Франтальная і профільная праекцыі цыліндра аднолькавыя. Тое самае можна сказаць аб праекцыях конуса. Таму ў дадзеным выпадку профільныя праекцыі на чарцяжы лішнія. Акрамя таго, дзякуючы знаку дыяметра \emptyset можна ўявіць форму цыліндра і конуса нават па адной праекцыі (рыс. 58, a і δ). Адсюль вынікае, што ў падобных выпадках няма неабходнасці ў трох праекцыях. Памеры цыліндра і конуса вызначаюцца іх вышынёй h і дыяметрам асновы d.

Усе праекцыі шара — кругі, дыяметр якіх роўны дыяметру шара. На кожнай праекцыі праводзяць цэнтравыя лініі.

Рыс. 58. Праекцыі цел вярчэння

Дзякуючы знаку \varnothing шар можна паказваць толькі ў адной праекцыі (рыс. 58, \mathfrak{s}). Але калі на відарысе цяжка адрозніць сферу ад іншых паверхняў, то на чарцяжы дадаюць слова «сфера», напрыклад: «Сфера $\varnothing 40$ ».


Як вы лічыце, якія фігуры з'яўляюцца праекцыямі цыліндра? конуса? шара?

§ 13. Тэхнічныя рысункі геаметрычных цел і дэталей

13.1. Пабудова восей фігур пры выкананні тэхнічнага рысунка. Тэхнічны рысунак — гэта наглядны відарыс прадмета, на якім, як правіла, паказаны бачнымі адразу тры яго бакі. Выконваюць тэхнічныя рысункі па правілах аксанаметрычных праекцый, але ад рукі, з прыблізным захаваннем прапорцый прадмета.

На уроках чарчэння вы будзеце будаваць тэхнічныя рысункі без выкарыстання аксанаметрычных праекцый, прымяняючы спецыяльныя графічныя прыёмы.

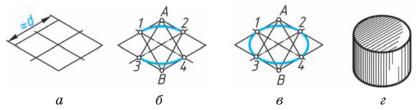
Пабудову тэхнічнага рысунка геаметрычнага цела, як і любога прадмета, пачынаюць з асно-

Рыс. 59. Пабудова тэхнічнага рысунка куба

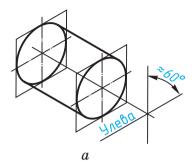
вы. Для гэтага спачатку праводзяць восі плоскіх фігур, якія ляжаць у аснове гэтых цел.

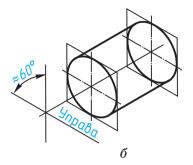
Восі будуюць, выкарыстоўваючы наступны графічны прыём. Адвольна выбіраюць вертыкальную лінію, задаюць на ёй любы пункт і праводзяць праз яго дзве прамыя, якія перасякаюцца пад вугламі 60° да вертыкальнай прамой (рыс. 59, a). Гэтыя прамыя і будуць восямі фігур, якія размешчаны ў гарызантальнай плоскасці.

Разгледзім прыклады. Няхай неабходна выканаць тэхнічны рысунак куба. Аснова куба — квадрат са стараной, роўнай a. Праводзім лініі старон квадрата паралельна пабудаваным восям (рыс. 59, σ і θ), выбіраючы іх велічыню прыкладна роўнай a. З вяршынь асновы праводзім вертыкальныя лініі і на іх адкладваем адрэзкі, прыкладна роўныя вышыні мнагагранніка (для куба яна роўная a). Затым злучаем вяршыні, заканчваючы пабудову куба (рыс. 59, ϵ). Аналагічна будуюцца рысункі іншых прадметаў.

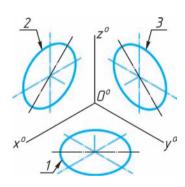

- 1. Па правілах якіх праекцый выконваюць тэхнічныя рысункі?
- 2. З якога элемента прадмета неабходна пачынаць выкананне тэхнічнага рысунка?

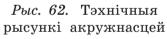
13.2. Тэхнічныя рысункі акружнасцей. Тэхнічныя рысункі акружнасцей зручна выконваць, упісваючы іх у рысунак квадрата (рыс. 60). Рысунак квадрата можна ўмоўна прыняць за ромб, а відарыс акружнасці — за авал. Авал — фігура, якая складаецца з дуг акружнасці, але ў тэхнічным рысаванні яна выконваецца не цыркулем, а ад рукі. Старана ромба прыкладна роўная дыяметру d акружнасці, якую паказваюць (рыс. 60, a).

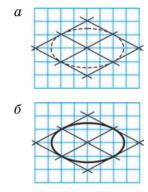

Каб упісаць у ромб авал, праводзяць дугі спачатку паміж пунктамі 1-2 і 3-4 (рыс. 60, 6). Іх радыує прыкладна роўны адлегласці A3 (A4) і B1 (B2). Затым праводзяць дугі 1-3 і 2-4 (рыс. 60, 6), заканчваючы пабудову тэхнічнага рысунка акружнасці.


Для паказу цыліндра неабходна пабудаваць рысункі яго ніжняй і верхняй асноў, размясціўшы іх уздоўж восі вярчэння на адлегласці, прыкладна роўнай вышыні цыліндра (рыс. 60, г).

Для пабудовы восей фігур, размешчаных не ў гарызантальнай плоскасці праекцый, як на рысунку 60, а ў вертыкальных плоскасцях, дастаткова на ўзятай вертыкальнай прамой праз адвольна выбраны пункт правесці адну прамую пад вуглом 60° да вертыкальнай лініі, накіраваўшы яе ўніз улева для фігур, паралельных франтальнай плоскасці праекцый, або ўніз упра-



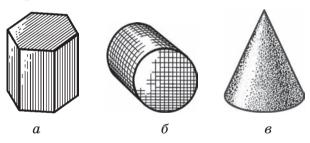

Рыс. 60. Пабудова тэхнічнага рысунка цыліндра Правообладатель Национальный институт образования



Рыс. 61. Пабудова восей фігур, размешчаных у вертыкальных плоскасцях

Рыс. 63. Тэхнічныя рысункі акружнасцей на паперы ў клетку

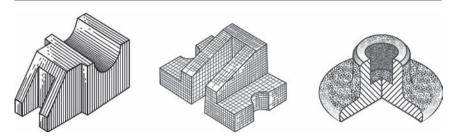
ва — для фігур, паралельных профільнай плоскасці праекцый (рыс. 61, a і δ).


Размяшчэнне авалаў пры выкананні тэхнічных рысункаў акружнасцей, змешчаных у розных каардынатных плоскасцях, паказана на рысунку 62, дзе 1 — гарызантальная плоскасць, 2 — франтальная і 3 — профільная.

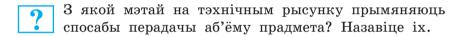
Тэхнічныя рысункі зручна выконваць на паперы ў клетку (рыс. 63).

Які прыём спрашчае працэс пабудовы тэхнічнага рысунка акружнасці?

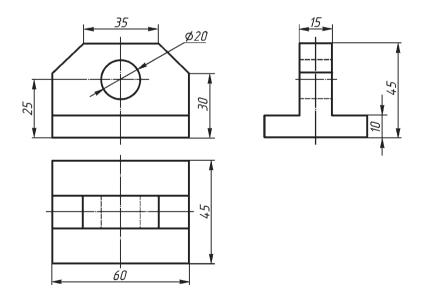
Правообладатель Национальный институт образования


13.3. Спосабы выяўлення аб'ёму прадметаў на тэхнічным рысунку. Для надання тэхнічнаму рысунку большай нагляднасці выкарыстоўваюць розныя спосабы перадачы аб'ёму прадмета. Імі могуць быць лінейная штрыхоўка (рыс. 64, а), шрафіроўка (штрыхоўка «клетачкай» — рыс. 64, б), кропкавае зацяненне (рыс. 64, в) і інш. (гл. таксама рыс. 65). Пры гэтым мяркуецца, што святло на паверхню падае злева зверху. Асветленыя паверхні пакідаюць светлымі, а на зацемненыя наносяць штрыхі, якія робяць больш густымі там, дзе больш цёмная тая ці іншая частка паверхні прадмета.

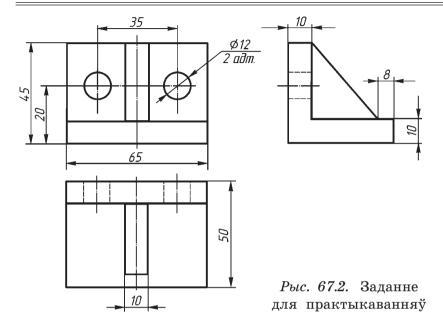
Рыс. 64. Прыклады тэхнічных рысункаў геаметрычных цел



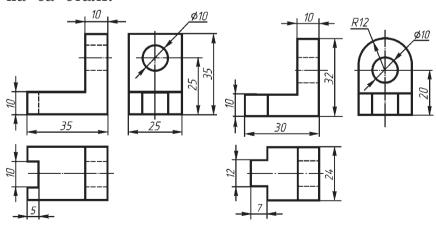
Рыс. 65. Спосабы перадачы аб'ёму прадмета на тэхнічным рысунку


Рыс. 66. Прыклады тэхнічных рысункаў дэталей

На рысунку 66 паказаны тэхнічныя рысункі больш складаных дэталей з выкарыстаннем штрыхоўкі, шрафіроўкі і кропкавага зацянення.



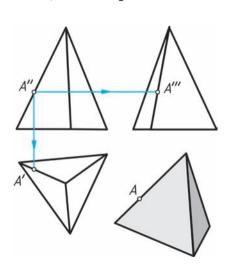
26. Выканайце ў рабочым сшытку тэхнічныя рысункі дэталей па чарцяжы ў прамавугольных праекцыях (рыс. 67.1 і 67.2).



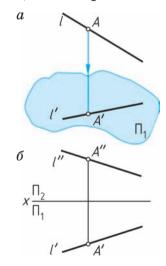
Рыс. 67.1. Заданне для практыкаванняў Правообладатель Национальный институт образования

ГР 3-1 Тэхнічны рысунак дэталі

Па чарцяжы ў прамавугольных праекцыях выканайце на фармаце тэхнічны рысунак адной з дэталей «кранштэйн» (рыс. 68). Дэталь выканана са сталі.



Рыс. 68. Заданне да графічнай работы № 3 Правообладатель Национальный институт образования


§ 14. Пабудова праекцый пунктаў на паверхнях цел і дэталей

14.1. Праекцыі пунктаў, якія ляжаць на кантах геаметрычных цел. Няхай на лініі, якая з'яўляецца праекцыяй канта трохвугольнай піраміды (рыс. 69), зададзена франтальная праекцыя A'' пункта A. Паколькі пункт A належыць канту піраміды, то праекцыі пункта павінны ляжаць на праекцыях гэтага канта. Значыць, трэба спачатку на чарцяжы знайсці праекцыі дадзенага канта, а затым пры дапамозе ліній сувязі адшукаць на іх праекцыі пункта.

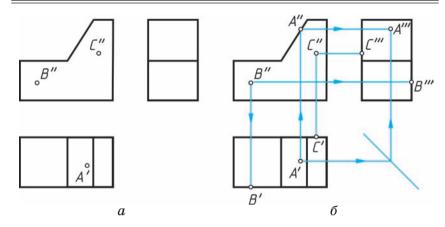
Пры гэтым карыстаюцца наступным правілам: калі пункт ляжыць на прамой (рыс. 70, a), то на чарцяжы яго праекцыі ляжаць на аднайменных праекцыях гэтай прамой (рыс. $70, \delta$), г. зн. гарызантальная праекцыя A' пункта A ляжыць на гарызантальнай праекцыі l' прамой l

Рыс. 69. Праекцыі пункта на відарысе піраміды

Рыс. 70. Праекцыі пункта на прамой

і г. д. Абедзве праекцыі пункта злучае адна лінія сувязі.

Гарызантальная праекцыя A' пункта A павінна ляжаць на гарызантальнай праекцыі канта, таму праводзім з пункта A'' вертыкальную лінію сувязі (гл. рыс 69). У месцы яе перасячэння з праекцыяй канта знаходзіцца пункт A' — гарызантальная праекцыя пункта A. Профільная праекцыя A''' пункта A ляжыць на профільнай праекцыі канта.

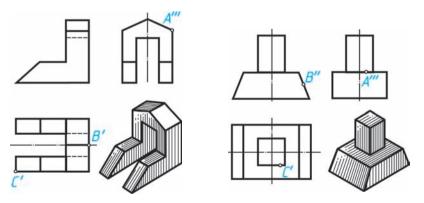

Так знаходзяць праекцыі любых пунктаў, якія ляжаць на кантах прадметаў.

14.2. Праекцыі пунктаў, якія ляжаць на гранях прадметаў. Часам прыходзіцца будаваць праекцыі пунктаў, якія ляжаць не на кантах, а на гранях. Каб па адной праекцыі пункта, што ляжыць на грані прадмета, знайсці астатнія, трэба перш-наперш знайсці праекцыі гэтай грані. Затым пры дапамозе ліній сувязі трэба адшукаць праекцыі пункта, якія павінны ляжаць на праекцыях грані.

Няхай на чарцяжы прадмета (рыс. 71, a) зададзены гарызантальная праекцыя A' пункта A, а таксама франтальныя праекцыі B'' і C'' пунктаў B і C. Пункты A і B ляжаць на бачных гранях прадмета, C — на нябачнай.

Па вертыкальнай лініі сувязі знойдзем спачатку франтальную праекцыю A'' пункта A (рыс. 71, δ), а затым, карыстаючыся пастаяннай прамой чарцяжа (гл. п. 7.3), на профільнай праекцыі грані знойдзем профільную праекцыю A''' пункта A.

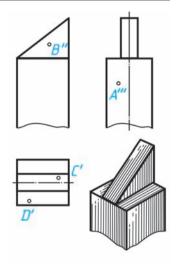
Лінію сувязі спачатку праводзяць да той праекцыі, на якой грань паказваецца ў выглядзе адрэзка прамой.


Рыс. 71. Пабудова праекцый пунктаў, якія належаць прадмету

Паслядоўнасць пабудовы праекцый пунктаў B і C паказана лініямі сувязі са стрэлкамі (гл. рыс. 71, δ). Аналагічна могуць быць пабудаваны праекцыі іншых пунктаў.

Як пабудаваць праекцыі пункта, калі ён належыць канту мнагагранніка? грані мнагагранніка?

27. На рысунках 72, 73, 74 дадзены чарцяжы ў сістэме прамавугольных праекцый і наглядныя відарысы гэтых прадметаў.

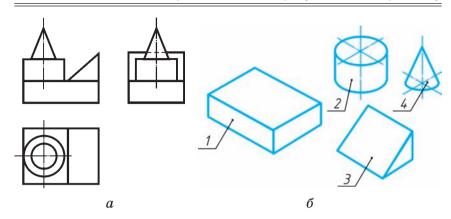


Рыс. 72. Заданне для практыкаванняў

Рыс. 73. Заданне для практыкаванняў

На чарцяжах зададзены праекцыі пунктаў, якія ляжаць на вяршынях, кантах і гранях прадметаў. Усе пункты бачныя. Перачарціце або перанясіце на кальку гэтыя відарысы, а таксама:

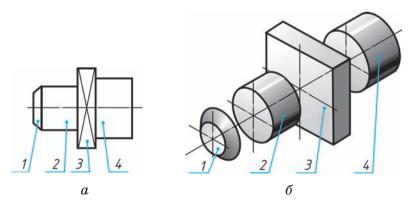
- 1) абазначце літарамі астатнія праекцыі вяршынь *A*, *B* і *C* (рыс. 72), знайдзіце гэтыя вяршыні на наглядным відарысе і пазначце іх літарамі;
- 2) пабудуйце праекцыі, якія адсутнічаюць, пунктаў A, B і C, зададзеных на кантах прадмета (рыс. 73); пазначце колерам праекцыі кантаў (для кожнага канта свой колер), на якіх ляжаць зададзеныя пункты; нанясіце пункты на наглядны відарыс і пазначце канты тым жа колерам, што і на чарцяжы;


Рыс. 74. Заданне для практыкаванняў

3) пабудуйце праекцыі, якія адсутнічаюць, пунктаў, зададзеных на гранях паверхні (рыс. 74); пазначце колерам праекцыі граней, на якіх ляжаць пункты (для кожнай грані — свой колер); пазначце гэтыя грані прадмета на наглядным відарысе тым жа колерам, што і на чарцяжы, і пакажыце праекцыі пунктаў.

§ 15. Прыклады пабудовы чарцяжоў дэталей

15.1. Аналіз геаметрычнай формы прадмета па чарцяжы. Паказаны на чарцяжы прадмет (рыс. 75, a) уяўляе сабой групу геаметрычных цел (рыс. 75, δ).


Прыгадаўшы адметныя рысы, характэрныя для відарысаў у прамавугольных праекцыях геаметрычных цел, і супаставіўшы ўсе тры выгляды— галоўны, зверху і злева, можна вызначыць, што: ніжняя частка прадмета (назавём яе асновай)

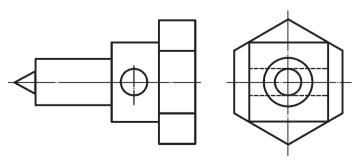
Рыс. 75. Відарыє прадмета і яго элементаў

уяўляе сабой прамавугольны паралелепіпед 1, на ім устаноўлены цыліндр 2 і трохвугольная прызма 3, на верхняй аснове цыліндра ўстаноўлены конус 4.

Асноўныя геаметрычныя целы можна выявіць у форме любой дэталі або прадмета. Так, на рысунку 76, а ў прамавугольнай праекцыі паказана дэталь, якая называецца валікам (ад слова «вал»). У ёй можна вылучыць такія геаметрыч-

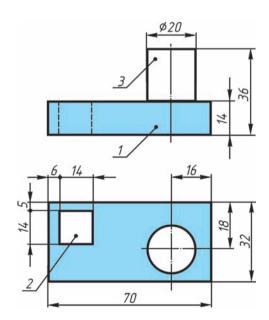
Рыс. 76. Праекцыя прадмета і элементы, з якіх ён складаецца

ныя целы (рыс. 76, δ), як усечаны конус 1, цыліндр 2, паралелепіпед 3 і яшчэ адзін цыліндр большага дыяметра 4.


Каб уявіць па чарцяжы агульную форму любой дэталі, неабходна выявіць форму ўсіх яе элементаў. Для гэтага складаную па форме дэталь мысленна падзяляюць на асобныя канструкцыйныя часткі, якія маюць форму розных геаметрычных цел. Мысленнае раздзяленне прадмета на асноўныя геаметрычныя целы называюць аналізам геаметрычнай формы прадмета. Выкарыстоўваючы відарыс дэталі, размерныя лікі, умоўныя знакі і надпісы, можна ўзнавіць вобраз дэталі, г. зн. уявіць па чарцяжы яе прасторавую форму.

З якой мэтай выкарыстоўваюць аналіз геаметрычнай формы прадмета па чарцяжы?

- **28.** Падлічыце па чарцяжы (рыс. 77), колькі геаметрычных цел утвараюць форму дэталі. Назавіце іх.
- **29.** Выканайце чарцёж дэталі па наступным яе апісанні. Дэталь называецца ўтулкай. Яна складаецца з усечанага конуса і правільнай чатырохвугольнай прызмы. Агульная даўжыня дэталі 60 мм. Дыяметр адной асновы конуса роўны 30 мм, другой 50 мм. Прызма далучана да большай асновы конуса і мае памеры 50×50 мм, вышыня яе



Рыс. 77. Заданне для практыкаванняў Правообладатель Национальный институт образования

роўная 20 мм. Уздоўж восі ўтулкі прасвідравана навылётная цыліндрычная адтуліна \varnothing 20 мм. Вызначце неабходную колькасць выглядаў, абазначце памеры.

15.2. Нанясенне памераў на аснове аналізу формы прадмета. З асноўнымі правіламі нанясення памераў мы ўжо пазнаёміліся. Высветлім цяпер, як, папярэдне прааналізаваўшы геаметрычную форму прадмета, трэба наносіць яго памеры на чарцяжы. Разгледзім прыклад.

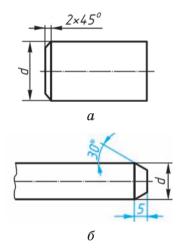
Дэталь, паказаную на чарцяжы (рыс. 78), можна мысленна раздзяліць на паралелепіпед 1 з адтулінай 2, якая таксама мае форму паралелепіпеда, і цыліндр 3. Памеры гэтых цел і наносяць на чарцяжы. Для паралелепіпеда і прызмы (яна чатырохвугольная) паказваюць даўжыню, шырыню і вышыню, для цыліндра — дыя-

Рыс. 78. Чарцёж дэталі Правообладатель Национальный институт образования

метр асновы і вышыню. Знайдзіце гэтыя памеры на чарцяжы (гл. рыс. 78).

Аднак нанесеных памераў будзе недастаткова для вырабу дэталі. Неабходна яшчэ мець памеры, якія вызначаюць узаемнае становішча яе частак. Такія памеры можна назваць каардынуючымі. На рысунку 78 імі з'яўляюцца памеры 16 і 18, 5 і 6 мм.

Памеры 16 і 18 мм вызначаюць становішча цэнтра цыліндрычнай адтуліны дэталі, памеры 5 і 6 мм — становішча прызматычнай адтуліны.

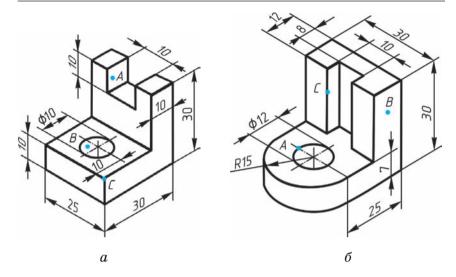

Памеры, якія вызначаюць вышыню цыліндра і глыбіню адтуліны, наносіць не трэба. Пры вырабе дэталі вышыню цыліндра можна вызначыць як рознасць паміж агульнай вышынёй дэталі (36 мм) і таўшчынёй асновы (14 мм). Яна роўная 22 мм. Глыбіня адтуліны роўная вышыні асновы, г. зн. 14 мм.

Кожны памер на чарцяжы паказваюць толькі адзін раз. Напрыклад, калі на галоўным выглядзе (гл. рыс. 78) нанесены памер асновы цыліндра \emptyset 20, то на выглядзе зверху яго наносіць не трэба. У той жа час на чарцяжы павінны быць усе памеры, неабходныя для вырабу дэталі.

На чарцяжах абавязкова наносяць *габарытныя памеры*, якія вызначаюць гранічныя велічыні знешніх абрысаў прадметаў. На рысунку 78 гэта памеры 70, 32, 36 мм. Габарытныя памеры размяшчаюць далей ад відарыса, чым астатнія.

Меншыя памеры размяшчаюць бліжэй да відарыса, а большыя — далей, што дазваляе пазбегнуць лішніх перасячэнняў размерных і вынасных ліній.

Памеры фасак пад вуглом 45° наносяць запісам, напрыклад $2\times45^{\circ}$, дзе 2— вышыня фаскі (рыс. 79, *a*), 45° — вугал, пад якім зроблена фаска. Памеры фасак пад іншымі вугламі паказваюць лінейным і вуглавым памерамі (рыс. 79, *б*).



Рыс. 79. Нанясенне памераў фаскі

- ?
- 1. У якой ступені аналіз формы дэталі дазваляе вызначыць памеры, неабходныя для нанясення на чарцяжы?
- 2. Якія памеры з'яўляюцца габарытнымі? Ці абавязкова іх паказваць на чарцяжы?
- 3. Як наносяць на чарцяжы памеры фасак? (Відарыс фаскі гл. на форзацы II.)

ГР 3-2 Чарцёж дэталі

Па наглядным відарысе адной з дэталей «вугольнік» пабудуйце яе чарцёж у прамавугольных праекцыях (рыс. 80). Нанясіце на чарцяжы праекцыі пунктаў A, B і C. Пакажыце памеры. Дэталь выраблена са сталі.

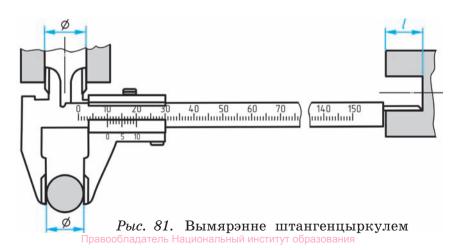
Рыс. 80. Заданне да графічнай работы № 3

§ 16. Выкананне эскізаў дэталей

16.1. Прызначэнне эскізаў. Да эскізаў адносяць чарцяжы, прызначаныя для разавага выкарыстання ў вытворчасці. Відарыс прадмета на эскізе выконваецца па правілах прамавугольнага праецыравання, але ад рукі, з захаваннем на вока прапорцый паміж часткамі прадмета, які паказваецца.

Эскізамі карыстаюцца канструктары пры праектаванні, напрыклад, новых машын. Эскізы выкарыстоўваюцца таксама пры рамонце абсталявання, калі замест пашкоджанай ці зламанай дэталі трэба зрабіць новую. Тады з натуры выконваюць эскіз дэталі.

У вытворчасці часта даводзіцца вырабляць дэталь непасрэдна па эскізе, таму да яго варта ставіцца як да важнага тэхнічнага дакумента.


Эскізы павінны выконвацца ў адпаведнасці са стандартамі АСКД роўнымі і дакладнымі лініямі. Усе надпісы варта рабіць чарцёжным шрыфтам.

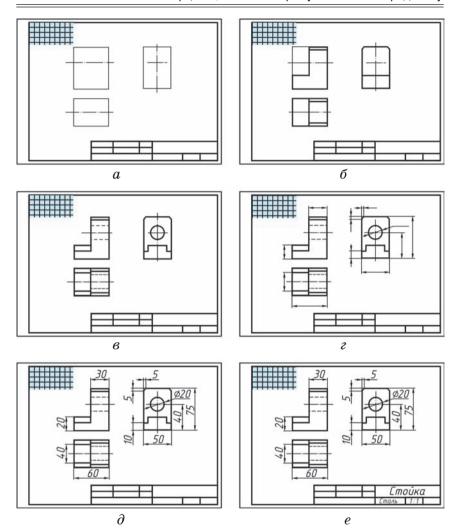
Эскіз выконваюць звычайна на паперы ў клетку, гэта значна зручней і хутчэй. Па клетках лёгка праводзіць перпендыкулярныя і паралельныя лініі, захоўваць прапарцыянальнасць частак прадмета пры пабудове відарысаў. Дугі акружнасцей можна правесці цыркулем, а потым абвесці іх ад рукі. Выконваюць эскіз мяккім алоўкам (М або 2М).

Для абмеру дэталі пры выкананні эскіза з натуры выкарыстоўваюць розныя вымяральныя прылады.

Вымярэнне лінейных велічынь выконваюць з дапамогай лінейкі. Для больш дакладных вымярэнняў (з хібнасцю не больш за 0,1...0,05 мм) выкарыстоўваюць штангенцыркуль (рыс. 81).

Штангенцыркулем вымяраюць лінейныя памеры, дыяметры цыліндрычных элементаў (знешніх і ўнутраных), а таксама глыбіню адтулін і паглыбленняў.

На практыцы выкарыстоўваюць і іншыя вымяральныя прылады.


- 1. Які чарцёж называецца эскізам?
- 2. Якім патрабаванням павінен адпавядаць эскіз?
- 16.2. Парадак выканання эскіза. Прыступаючы да выканання эскіза, перш за ўсё трэба ўважліва азнаёміцца з дэталлю: па магчымасці высветліць яе прызначэнне, дакладна ўявіць агульную геаметрычную форму дэталі, форму яе асобных частак. Пры гэтым карысна мысленна падзяліць дэталь на часткі, якія маюць форму геаметрычных цел.

Затым варта вызначыць, колькі выглядаў неабходна выканаць для поўнага выяўлення формы і памераў дэталі, выбраць галоўны выгляд. Ён павінен даваць найбольш поўнае ўяўленне аб форме і памерах дэталі. На галоўным выглядзе павінна быць па магчымасці менш штрыхавых ліній.

Памятайце, што колькасць выглядаў можна скараціць, выкарыстоўваючы знакі \emptyset (дыяметр) і \square (квадрат), умоўнае абазначэнне таўшчыні дэталі (s) і інш.

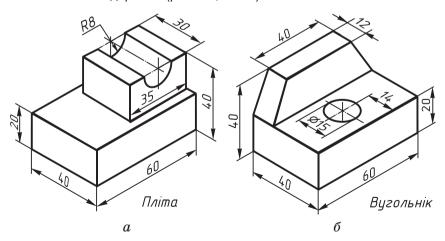
Будуюць відарысы дэталі на эскізе ў наступнай паслядоўнасці (рыс. 82).

- 1. Вычэрчваюць на лісце выбранага фармату знешнюю рамку і рамку, якая абмяжоўвае поле чарцяжа. Размячаюць і вычэрчваюць графы асноўнага надпісу.
- 2. Вызначаюць, як найлепшым чынам размясціць відарысы на полі чарцяжа, і вычэрчваюць тонкімі лініямі габарытныя прамавугольнікі. Пры неабходнасці праводзяць восевыя і цэнтравыя лініі (рыс. 82, a).

Рыс. 82. Паслядоўнасць выканання эскіза дэталі

- 3. Наносяць на выглядах знешнія (бачныя) контуры дэталі (рыс. 82, σ).
- 4. Штрыхавымі лініямі паказваюць нябачныя часткі і элементы дэталі (рыс. 82, ϵ). Абводзяць эскіз.
- 5. Наносяць неабходныя вынасныя і размерныя лініі (рыс. 82, г).

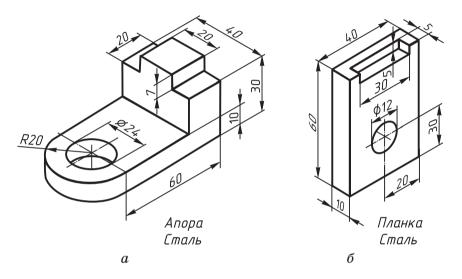
 Правообладатель Национальный институт образования


- 6. Абмяраюць дэталь, наносяць размерныя лікі і, калі гэта неабходна, патрэбныя надпісы (рыс. $82, \partial$).
- 7. Запаўняюць асноўны надпіс (рыс. 82, e), дзе паказваюць назву дэталі, матэрыял, з якога яна выраблена, іншыя звесткі.

Нарэшце правяраюць эскіз. Пры гэтым неабходна пераканацца, што:

- а) відарысы пабудаваны правільна і ў праекцыйнай сувязі;
 - б) галоўны выгляд дэталі выбраны трапна;
- в) выглядаў дастаткова для таго, каб выявіць форму дэталі;
 - г) памеры нанесены правільна;
 - д) зроблены неабходныя тлумачальныя надпісы;
 - е) правільна запоўнены асноўны надпіс.
- ?
- 1. З якіх асноўных этапаў складаецца работа па зняцці эскіза з натуры?
- 2. Якая паслядоўнасць выканання эскіза?

30. Выканайце ў рабочым сшытку эскізы дэталей па іх наглядных відарысах (рыс. 83, *a* і *б*).



Рыс. 83. Заданне для практыкаванняў Правообладатель Национальный институт образования

ГР 3-3

Эскіз дэталі

Па заданні настаўніка выканайце на фармаце эскіз дэталі з натуры або па наглядным відарысе (рыс. 84, a і δ).

Pыс.~84.~ Заданне да графічнай работы № 3

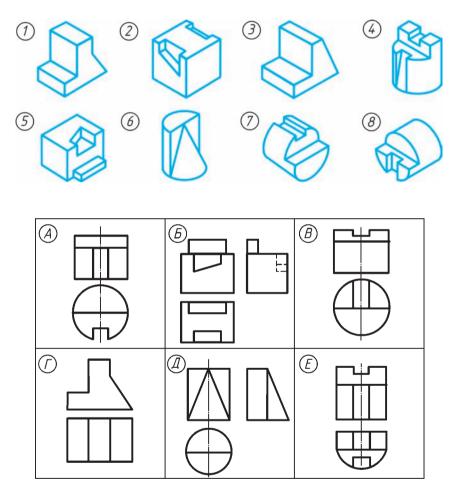
V. ЧЫТАННЕ ЧАРЦЯЖОЎ У ПРАМАВУГОЛЬНЫХ ПРАЕКЦЫЯХ

§ 17. Парадак чытання чарцяжоў

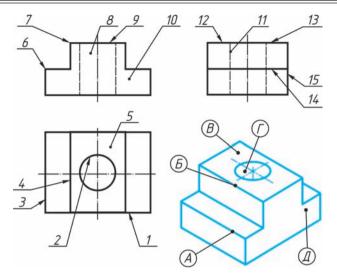
17.1. Агульныя звесткі аб чытанні чарцяжоў. Уяўленне аб'ёмнай формы прадмета па плоскіх відарысах, вызначэнне яго памераў, атрыманне іншай інфармацыі аб прадмеце па чарцяжы — гэта працэс, які называюць чытаннем чарияжа.

Чытанне чарцяжа з'яўляецца састаўной часткай вытворчай дзейнасці рабочых розных спецыяльнасцей: тэхнікаў, канструктараў, інжынераў. Кожны з іх павінен умець даваць слоўную характарыстыку прадмета па чарцяжы.

Падчас чытання чарцяжа вобраз рэальнага прадмета ўзнікае ў выніку вывучэння ўсіх наяўных відарысаў, размерных лікаў, надпісаў, умоўных знакаў, іншых даных чарцяжа.


Для вызначэння геаметрычнай формы прадмета выкарыстоўваюць яе аналіз. Спачатку падзяляюць прадмет на састаўныя часткі, вызначаюць іх форму, а затым мысленна аб'ядноўваюць атрыманую інфармацыю ў адзіны прасторавы вобраз.

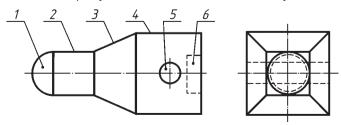
- Што ўяўляе сабой працэс чытання чарцяжа?
 З якой мэтай пры чытанні чарцяжа аналізуюць
 - геаметрычную форму прадмета?


31. Запішыце ў рабочым сшытку: які нумар *(1—8)* нагляднага відарыса дэталей адпавядае літарным абазначэнням *(А—Е)* чарцяжоў (рыс. 85).

Рыс. 85. Заданне для практыкаванняў

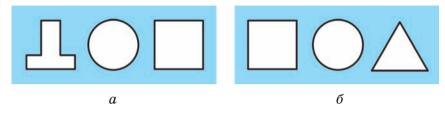
32. На рысунку 86 змешчаны чарцёж і наглядны відарыс дэталі, якая называецца «аснова». Аснова прызначана для непасрэднага ўспрымання нагрузкі ад машыны або якога-небудзь іншага збудавання.

Правообладатель Национальный институт образования



Рыс. 86. Заданне для практыкаванняў

Запоўніце ў рабочым сшытку табліцу, указаўшы назвы элементаў дэталі і адпаведнасць паміж літарнымі абазначэннямі пункта на дэталі і лічбавымі абазначэннямі гэтага пункта на праекцыях.


Элемент дэталі		Чарцёж		
Абазначэнне	Назва	галоўны выгляд	выгляд зверху	выгляд злева
А	кант	6	3	14

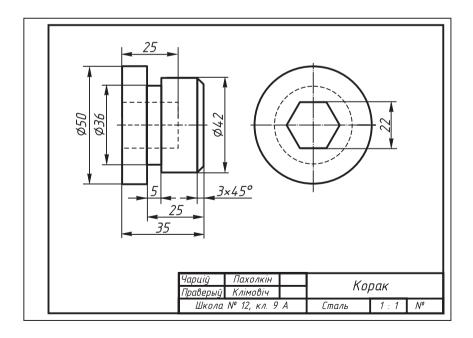
- 33. 1. Спалучэннем якіх геаметрычных цел утворана форма дэталі, паказанай на рысунку 87? Запішыце адказ у сшытак у такой форме: 1 паўшар'е; 2 ... і г. д.
 - 2. Выканайце рысункі кожнага з гэтых элементаў дэталі.

Рыс. 87. Заданне для практыкаванняў Правообладатель Национальный институт образования

34. Выканайце тэхнічны рысунак прадмета, які можа шчыльна праходзіць праз усе тры адтуліны ў пласціне (рыс. 88, a — варыянт 1, рыс. 88, δ — варыянт 2).

Рыс. 88. Займальныя задачы

- 17.2. Паслядоўнасць чытання чарцяжоў дэталей. Каб атрымаць па чарцяжы інфармацыю аб дэталі, г. зн. прачытаць яе чарцёж, неабходна захоўваць пэўную паслядоўнасць (парадак) дзеянняў.
- 1. Прачытаць асноўны надпіс чарцяжа: высветліць назву і прызначэнне дэталі, назву матэрыялу, з якога яна зроблена, маштаб відарысаў.
- 2. Вызначыць, якія выгляды, іншыя відарысы дэталі змешчаны на чарцяжы, які выгляд з'яўляецца галоўным.
- 3. Вывучыць выгляды і іншыя відарысы ў іх узаемнай сувязі, высветліць абрысы дэталі, узаемнае размяшчэнне і форму яе частак. Уявіўшы па чарцяжы форму кожнай часткі дэталі, мысленна аб'яднаць іх у адзіны вобраз.
- 4. Вызначыць памеры дэталі і памеры яе элементаў.


Чытаючы чарцёж дэталі, можна сфармуляваць для сябе пытанні, якія даюць уяўленне аб ёй:

- а) як называецца дэталь;
- б) з якога матэрыялу яна зроблена;
- в) у якім маштабе выкананы чарцёж;
- г) якія выгляды ўтрымлівае чарцёж;

- д) спалучэннем якіх геаметрычных цел утворана форма дэталі;
 - е) якая яе агульная форма;
- ж) якія габарытныя памеры дэталі і памеры яе асобных частак.

Разгледзім прыклад. На рысунку 89 змешчаны чарцёж дэталі, які неабходна прачытаць. Якую інфармацыю мы можам атрымаць аб дэталі з гэтага чарцяжа? Карыстаючыся толькі што прыведзенай паслядоўнасцю чытання чарцяжа, можна вызначыць, што дэталь называецца «корак», яна зроблена са сталі. Маштаб — 1:1, г. зн. відарыс выкананы ў натуральную велічыню.

Чарцёж змяшчае два выгляды— галоўны выгляд і выгляд злева. Іншых відарысаў няма. Ка-

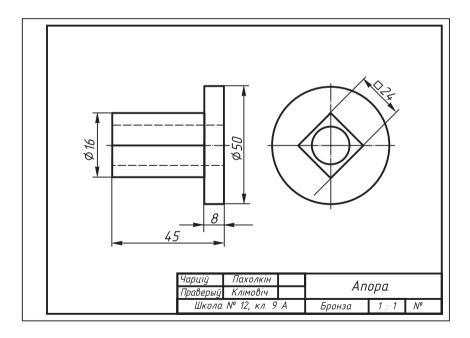
Рыс. 89. Чарцёж дэталі Правообладатель Национальный институт образования

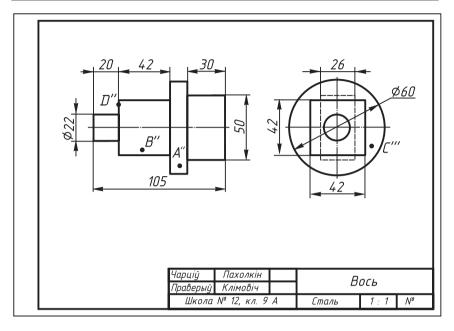
рыстаючыся выглядамі, вызначаем форму дэталі і яе частак.

Супастаўляючы выгляды, можна вызначыць, што форма дэталі ўтворана некалькімі паверхнямі вярчэння — цыліндрамі. Адзін з іх мае дыяметр 50 мм, а вышыню — 10 (35-25) мм. Восі вярчэння цыліндраў супадаюць і размешчаны паралельна гарызантальнай плоскасці праекцый. Другі цыліндр мае дыяметр 42 мм, вышыню — 20 (25-5) мм. Паміж гэтымі цыліндрамі знаходзіцца элемент дэталі — праточка, якая мае форму цыліндра дыяметрам 36 мм і даўжынёй 5 мм. На цыліндры дыяметрам 42 мм ёсць канічнай формы фаска, яе памеры $3\times45^\circ$, г. зн. вышыня фаскі 3 мм, а выканана яна пад вуглом 45° .

Уздоўж восі вярчэння паверхняў, якія ўтвараюць форму дэталі, размешчана паглыбленне. Яно мае форму шасцівугольнай прызмы і паказана на галоўным выглядзе штрыхавымі лініямі. Глыбіня адтуліны — 25 мм, а адлегласць паміж дзвюма паралельнымі гранямі — 22 мм. На дэталях такі памер называюць памерам «пад ключ», ён вызначае адлегласць паміж «губкамі» ключа.

Габарытныя памеры дэталі: 35 мм і ∅50 мм. Такім чынам, чытанне чарцяжа зводзіцца да атрымання ўсёй інфармацыі аб прадмеце, што ёсць на чарцяжы. Пры гэтым абавязкова ўлічваецца як графічная, так і тэкставая інфармацыя. Толькі разам яны даюць адназначнае ўяўленне пра форму прадмета, яго памеры, матэрыял, г. зн. выклікаюць прасторавы вобраз прадмета па яго плоскім відарысе, які выкананы на паперы або класнай дошцы.

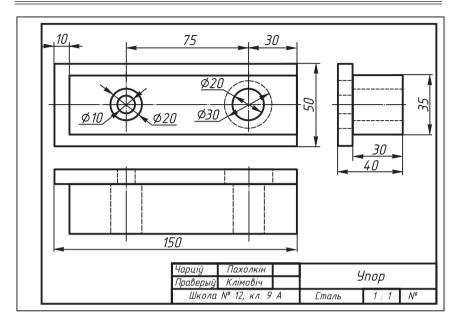

Як вы лічыце, у якой паслядоўнасці неабходна чытаць чарцёж дэталі?


35. Прачытайце чарцёж дэталі, паказаны на рысунку 90.

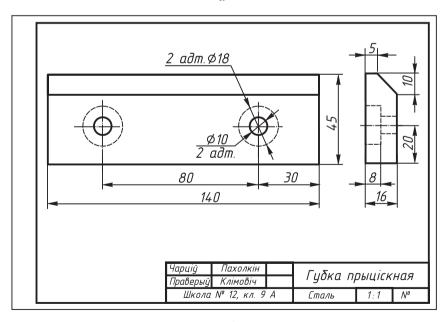
Пытанні да чарцяжа

- 1. Як называецца дэталь?
- 2. З якога матэрыялу яна выканана?
- 3. Які маштаб відарысаў?
- 4. Якія выгляды змешчаны на чарцяжы?
- 5. Спалучэннем якіх геаметрычных цел утворана форма дэталі?
- 6. Які элемент дэталі паказаны на галоўным выглядзе штрыхавымі лініямі? Якой ён формы?
- 7. Відарысам якога элемента дэталі з'яўляецца акружнасць ∅50 мм? Назавіце ўсе памеры гэтага элемента.
 - 8. Якія габарытныя памеры дэталі?

Рыс. 90. Заданне для практыкаванняў Правообладатель Национальный институт образования



Рыс. 91. Заданне для практыкаванняў


36. На рысунку 91 змешчаны чарцёж тэхнічнай дэталі.

Заданні да чарцяжа

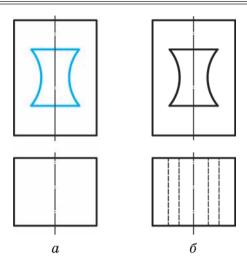
- 1. Прачытайце чарцёж, выкарыстоўваючы разгледжаную вышэй паслядоўнасць.
- 2. На бачных частках паверхні дэталі на адным з выглядаў дадзены праекцыі пунктаў. Не перачэрчваючы відарысы, вызначце становішчы праекцый гэтых пунктаў на другім выглядзе.
- 3. Вызначце, ці супадае з вяршыняй які-небудзь з зададзеных пунктаў (A, B і г. д.); які з іх ляжыць на канце, грані або на паверхні вярчэння дэталі.
- 4. У рабочым сшытку запішыце: назву дэталі, матэрыял, з якога яна зроблена; маштаб; колькасць відарысаў і іх назвы; колькасць геаметрычных цел, якія ўтвараюць форму дэталі, і іх назвы; габарытныя памеры дэталі.
 - **37.** Прачытайце чарцяжы дэталей (рыс. 92, *a* і б). Правообладатель Национальный институт образования

a

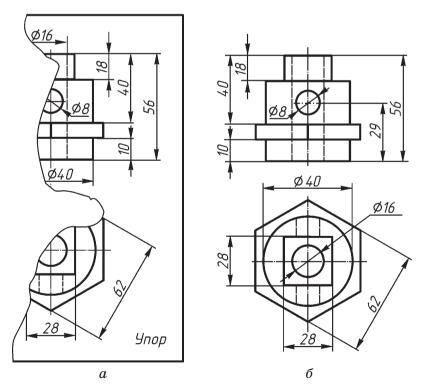
б

Рыс. 92. Заданне для практыкаванняў Правообладатель Национальный институт образования

VI. ГРАФІЧНЫЯ ПЕРАЎТВАРЭННІ ГЕАМЕТРЫЧНЫХ ФІГУР


§ 18. Пераўтварэнне відарысаў на чарцяжах

У вучэбнай практыцы, у вытворчай дзейнасці сустракаюцца графічныя задачы, рашэнне якіх звязана з пераўтварэннем розных геаметрычных фігур. Пераўтварэнні прадугледжваюць замену адной фігуры іншай, атрыманай з першай па пэўных правілах.


Разгледзім некаторыя з пераўтварэнняў у дачыненні да рашэння канкрэтных графічных задач.

18.1. Дапаўненне відарысаў лініямі, якія адсутнічаюць. Рэканструкцыя відарысаў. Падчас праверак і выпраўлення чарцяжа часам узнікае неабходнасць нанесці на тым або іншым выглядзе лінію, якая адсутнічае, які-небудзь знак, абазначэнне і відарыс элемента дэталі. Часам неабходна зняць лініі, якія не даюць нічога новага для выяўлення формы дэталі. Як першае, так і другое важна ў практыцы выканання разрэзаў, дэталіравання чарцяжоў і інш.

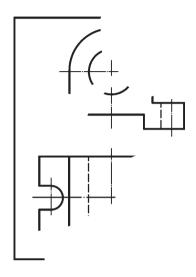
Няхай на чарцяжы (рыс. 93, a) на выглядзе зверху адсутнічаюць некаторыя лініі. Калі вядома, што адтуліна ў дэталі навылётная, то, каб гэта было бачна з чарцяжа, неабходна паказаць адтуліну на выглядзе зверху (рыс. $93, \delta$), г. зн. правесці штрыхавыя лініі, якіх не хапае. Правообладатель Национальный институт образования

Рыс. 93. Дапаўненне чарцяжа лініямі

Рыс. 94. Рэканструкцыя відарысаў Правообладатель Национальный институт образования

Дапаўненне чарцяжа некаторымі лініямі звязана з такім відам графічнай дзейнасці, як рэканструкцыя відарысаў. *Рэканструкцыя* — узнаўленне цэласнасці відарыса па яго частцы або частках. Напрыклад, неабходна аднавіць «пашкоджаны» чарцёж (рыс. 94, *a*). У гэтым выпадку па пакінутых частках відарысаў (два выгляды) трэба рэканструяваць зыходныя даныя чарцяжа і выканаць чарцёж цалкам (рыс. 94, *б*).

- 1. Калі ўзнікае неабходнасць у дапаўненні чарцяжа некаторымі лініямі?
- 2. Што ўяўляе сабой рэканструкцыя відарысаў?


- 38. На чарцяжы не дачэрчаны выгляд злева (рыс. 95). Перачарціце прапанаваныя відарысы, дапоўніўшы выгляд злева неабходнымі лініямі. Якія элементы дэталі адлюстроўваюць гэтыя лініі?
- 39*. Дапоўніце выгляды прадмета, дадзеныя на чарцяжы, лініямі, якіх не хапае (рыс. 96).

Рыс. 95. Заданне для практыкаванняў

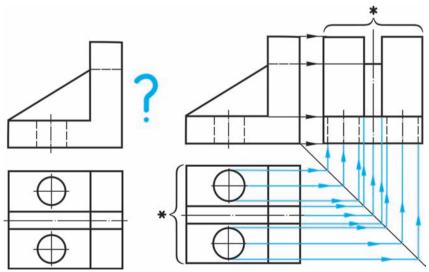
Рыс. 96. Заданне для практыкаванняў

40. Зрабіце рэканструкцыю чарцяжа (рыс. 97).

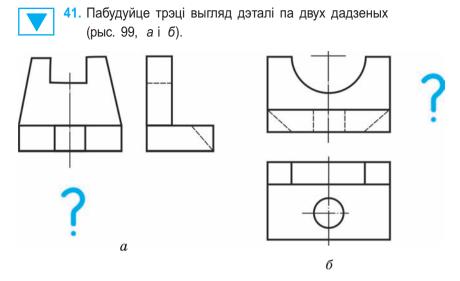
Рыс. 97. Заданне для практыкаванняў

18.2. Змяненне колькасці відарысаў на чарцяжы. У вучэбнай практыцы часам даводзіцца выконваць заданні, звязаныя з павелічэннем або памяншэннем колькасці відарысаў на чарцяжы, напрыклад будаваць трэці выгляд па двух прапанаваных.

Пабудова трэцяга выгляду прадмета зводзіцца да пабудовы адсутных праекцый яго асобных элементаў (пунктаў, ліній, плоскіх фігур) і асобных частак. Для гэтага пры вывучэнні чарцяжа вызначаюць форму, памеры і становішча гэтых частак на прадмеце. Такім чынам, спачатку ажыццяўляецца чытанне чарцяжа. Пасля гэтага пераходзяць да графічных пабудоў, вычэрчваючы паслядоўна, адзін за адным, тыя або іншыя элементы прадмета.


На рысунку 98 паказана паслядоўнасць пабудовы выгляду злева па двух дадзеных: галоўным і зверху. Перанос памераў з выгляду зверху на той выгляд, які патрабуецца дабудаваць, зроблены з дапамогай пастаяннай прамой чарцяжа.

Часам пры пабудове на чарцяжы выгляду, які адсутнічае, прымяненне пастаяннай прамой неабавязкова. Для пераносу памераў з аднаго выгляду на другі можна выкарыстаць цыркуль або лінейку (напрыклад, гл. рыс. 98, памер, пазначаны зорачкай).

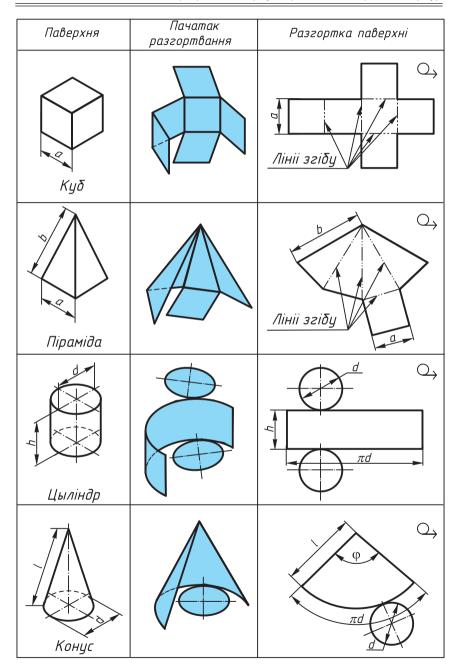

Затым трэба выдаліць лініі пабудовы і абвесці чарцёж.

На практыцы сустракаюцца задачы і на памяншэнне колькасці відарысаў. З такімі задачамі вы сустрэнецеся пазней.

Прывядзіце прыклады задач на змяненне колькасці відарысаў на чарцяжы.

Рыс. 98. Пабудова выгляду злева дэталі Правообладатель Национальный институт образования

Рыс. 99. Заданне для практыкаванняў


ГР 4-1 Чарцёж дэталі

Пабудуйце трэці выгляд дэталі па двух дадзеных (умову задачы прапаноўвае настаўнік).

§ 19. Пабудова чарцяжоў разгортак

Для стварэння шматлікіх вырабаў з ліставога матэрыялу неабходна выканаць іх разгорткі. Разгорнутымі называюцца такія паверхні, якія могуць быць сумешчаны ўсімі сваімі пунктамі з плоскасцю без утварэння складак і разрываў. Разгледзім працэс пабудовы разгортак некаторых мнагаграннікаў і крывых паверхняў (рыс. 100).

1. Разгортка паверхні любой прамой прызмы, у тым ліку і куба, уяўляе сабой плоскую фігуру,

Рыс. 100. Разгорткі паверхняў геаметрычных цел Правообладатель Национальный институт образования

якая складаецца з бакавых граней — прамавугольнікаў і дзвюх асноў — многавугольнікаў.

Разгортка піраміды складаецца з трохвугольнікаў (іх колькасць роўная колькасці граней піраміды) і многавугольніка асновы.

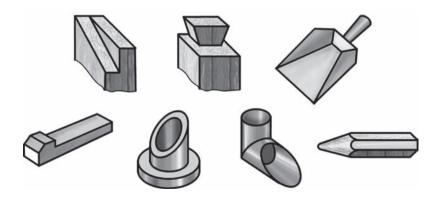
- 2. Разгортка паверхні цыліндра складаецца з прамавугольніка і двух кругоў. Адна старана прамавугольніка роўная вышыні цыліндра, другая даўжыні акружнасці асновы πd . На чарцяжы да прамавугольніка дабудоўваюцца два кругі, дыяметр якіх роўны дыяметру асноў цыліндра.
- 3. Разгортка паверхняў конуса ўяўляе сабой плоскую фігуру, якая складаецца з сектара разгорткі бакавой паверхні і круга асновы конуса.

Вугал ф можна вылічыць і па формуле:

$$\varphi = \frac{360^{\circ} \cdot d}{2 \cdot l},$$

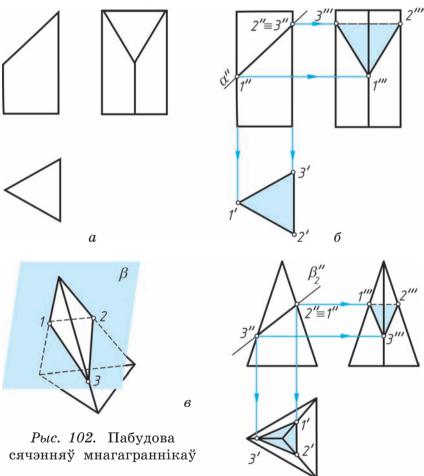
дзе d — дыяметр акружнасці асновы; l — даўжыня ўтваральнай конуса.

На чарцяжы разгорткі над відарысам ставяць спецыяльны знак ○→. Ад ліній згібу, дзе яны ёсць (а іх праводзяць штрыхпункцірнай з дзвюма кропкамі), праводзяць лініі-вынаскі і пішуць на лініі-паліцы «Лініі згібу».


- 1. Якія плоскія фігуры ўяўляюць сабой разгорткі прызмы? цыліндра? конуса?
- 2. Які знак павінен суправаджаць чарцяжы разгортак?

§ 20. Выкананне чарцяжоў прадметаў са змяненнем іх формы

20.1. Пабудова чарцяжоў прадметаў са зрэзамі. На практыцы часта сустракаюцца дэталі, форма якіх уяўляе сабой геаметрычнае цела з плоскімі зрэзамі або з нахіленымі гранямі (рыс. 101). Зрэз — гэта вынік сячэння паверхні мнагагранніка або цела вярчэння якой-небудзь плоскасцю.

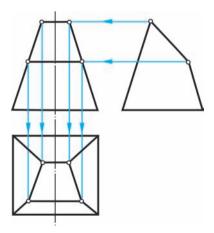

Фігура, атрыманая ў выніку сячэння мнагагранніка, — *многавугольнік*. У сячэнні цела вярчэння плоскасцю атрымліваюцца розныя фігуры, абмежаваныя крывымі або прамымі лініямі ў залежнасці ад таго, як размешчана ў прасторы сякучая плоскасць адносна паверхні цела або плоскасці праекцый.

Сячэнні паверхняў плоскасцю разглядаюць у геаметрыі. Тут жа прыведзены толькі некаторыя графічныя пабудовы, з дапамогай якіх можна атрымаць чарцяжы прадметаў, што маюць плоскія зрэзы.

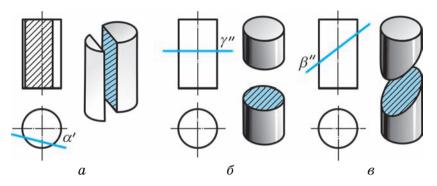
Рыс. 101. Відарысы прадметаў са зрэзамі Правообладатель Национальный институт образования

На рысунку 102, a адлюстравана частка прызмы. Відавочна, што прызма такой формы атрымаецца ў выніку перасячэння яе бакавой паверхні плоскасцю α , перпендыкулярнай да франтальнай плоскасці праекцый¹.

 $^{^1}$ Сякучыя плоскасці будзем абазначаць малымі літарамі грэчаскага алфавіта: α , β , γ і інш. Праєкцыі гэтых плоскасцей будзем дапаўняць знакам «'» — «штрых»: гарызантальная — α' , франтальная — α'' , профільная — α''' і г. д.


Правообладатель Национальный институт образования

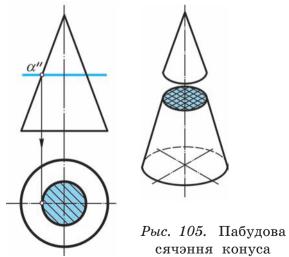
Разгледзім паслядоўнасць пабудовы праекцый фігуры сячэння (рыс. $102, \delta$). Франтальная праекцыя фігуры сячэння супадае з франтальнай праекцыяй сякучай плоскасці (лінія $1''-2''\equiv 3''$), гарызантальная — з гарызантальнай праекцыяй асновы прызмы (1'-2'-3'). Профільную праекцыю фігуры сячэння знаходзім, зыходзячы з уласцівасцей прыналежнасці пунктаў фігуры сячэння да кантаў прызмы (1'''-2'''-3'''). Іх праекцыі будуюць з дапамогай ліній сувязі.


Аналагічна можа быць пабудавана фігура сячэння піраміды плоскасцю, перпендыкулярнай да франтальнай плоскасці праекцый (рыс. $102, \varepsilon$).

На рысунку 103 паказана пабудова праекцый фігуры сячэння піраміды плоскасцю, перпендыкулярнай да профільнай плоскасці праекцый. Разгледзьце гэты прыклад самастойна.

У сячэнні цыліндра плоскасцю могуць атрымлівацца наступныя фігуры: прамавугольнік, круг, эліпс (рыс. 104). У першым выпадку сякучая плоскасць павінна быць паралельная восі вяр-

Рыс. 103. Пабудова сячэння піраміды Правообладатель Национальный институт образования

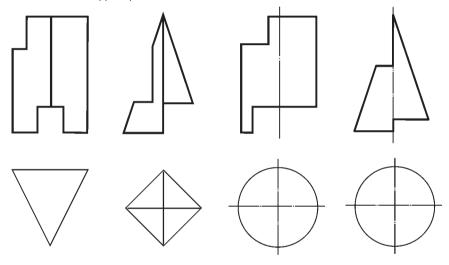


Рыс. 104. Пабудова сячэнняў цыліндра

чэння цыліндра (рыс. 104, a), у другім — накіравана перпендыкулярна да яе (рыс. $104, \delta$), у трэцім — нахіленая да восі вярчэння пад любым вуглом, які не роўны 90° (рыс. $104, \delta$).

Фігуры, абмежаваныя прамымі або крывымі лініямі, атрымліваюцца і ў сячэнні конуса плоскасцю, у залежнасці ад яе становішча адносна восі вярчэння цела або яго ўтваральных. У прыватнасці, сячэнне конуса плоскасцю, перпендыкулярнай да восі вярчэння, — гэта круг (рыс. 105).

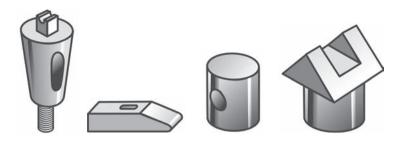
Сячэнне шара — заўсёды круг.



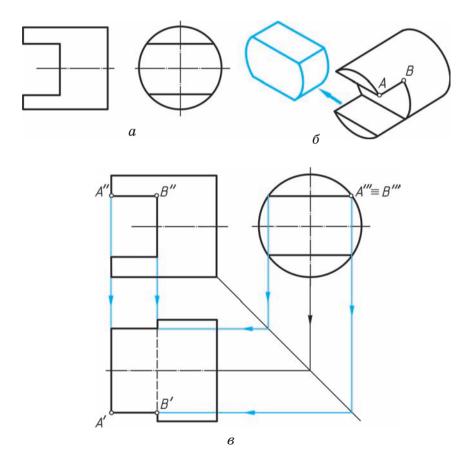
Правообладатель Национальный институт образования

- 1. Якія фігуры атрымліваюцца ў выніку сячэння мнагагранніка плоскасцю?
- 2. Якія фігуры атрымліваюцца ў выніку сячэння цыліндра плоскасцю?

42*. Пабудуйце чарцяжы прызмы, піраміды, цыліндра і конуса (рыс. 106), форма якіх зменена ў выніку сячэння плоскасцямі, перпендыкулярнымі да франтальнай плоскасці праекцый. Чарцяжы павінны ўтрымліваць два або тры выгляды (па заданні настаўніка). Лішнія лініі выдаліце.



Рыс. 106. Заданне для практыкаванняў


20.2. Пабудова выразаў на геаметрычных целах. На практыцы сустракаецца шмат дэталей і іншых прадметаў, геаметрычная форма якіх зменена рознымі выразамі (рыс. 107). Каб выканаць або прачытаць чарцёж такога прадмета, трэба ўявіць яго першапачатковую форму і форму выраза.

Разгледзім некаторыя прыклады.

На рысунку 108, *а* змешчаны чарцёж корка. Вывучыўшы яго, высвятляем, што дэталь выкана-Правообладатель Национальный институт образования

Рыс. 107. Відарысы прадметаў з выразамі

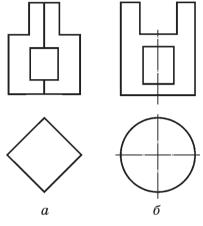
Рыс. 108. Пабудова праекцый выраза на чарцяжы дэталі


на з загатоўкі цыліндрычнай формы, у якой зроблены выраз прамавугольнай формы (рыс. $108, \delta$).

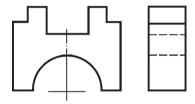
Каб пабудаваць выгляд зверху дэталі, спачатку паказваюць прамавугольнік — выгляд цыліндра зверху, які з'яўляецца зыходнай формай дэталі. Затым будуюць праекцыю выраза. Абазначым некаторыя характэрныя пункты (A'', B'' і $A''' \equiv B'''$), якія вызначаюць праекцыі выраза, і па іх з дапамогай ліній сувязі пабудуем гарызантальныя праекцыі A', B' гэтых пунктаў і ім сіметрычных (рыс. 108, \mathscr{B}).

Вызначыўшы форму выраза, лёгка вырашыць, якія лініі на выглядзе зверху трэба абводзіць суцэльнымі тоўстымі асноўнымі, якія — штрыхавымі лініямі, а якія — выдаліць.

Лінію, якая абмяжоўвае выраз на паверхні прадмета, можна паказаць і як лінію ўзаемнага перасячэння дзвюх паверхняў, адна з якіх выдалена. Такой выдаленай паверхняй на рысунку 109 з'яўляецца паверхня гарызантальнага цыліндра.

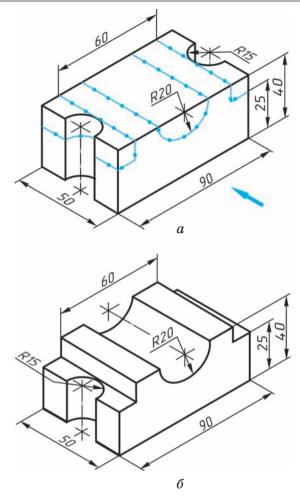

Паглядзіце навокал і знайдзіце ў прадметах быту і працы розныя паверхні, відазмененыя выразамі.

паверхняў двух цел Правообладатель Национальный институт образования



43*. Пабудуйце чарцяжы прызмы і цыліндра (рыс. 110, *a* і *б*), форма якіх зменена выразамі. Адтуліны ў дэталях навылётныя. Чарцёж павінен змяшчаць тры выгляды.

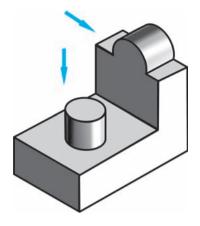
Рыс. 110. Заданне для практыкаванняў


44. Нарысуйце часткі дэталі, выдаленыя з дапамогай выразаў (рыс. 111). Колькі іх? Пабудуйце выгляд зверху дэталі.

Рыс. 111. Заданне для практыкаванняў

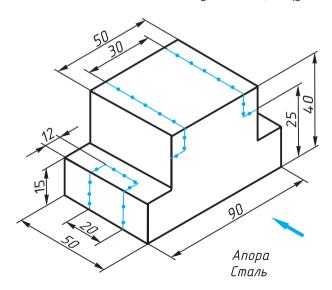
20.3. Пераўтварэнне формы прадмета па чарцяжы. Пры рашэнні шэрагу практычных і вучэбных задач часта ўзнікае неабходнасць выканаць чарцёж прадмета, змяніўшы, г. зн. пераўтварыўшы яго дадзеную геаметрычную форму. Такія задачы часта называюць задачамі на канструяванне. Пераўтварэнне формы дэталі можа ажыццяўляцца пры дапамозе выдалення яе асобных частак, змянення іх становішча, нарошчвання, павароту, руху і інш.

Напрыклад, на рысунку 112, а змешчана дэталь — корпус. На відарысе кропкамі і тонкімі лініямі нанесена разметка, па якой пераўтвараюць паверхню дэталі з мэтай надання ёй неабходных у вытворчасці формы і памераў. На рысунку 112, б змешчаны відарыс дэталі пасля паказанага на чарцяжы змянення яе формы.


Рыс. 112. Змяненне формы дэталі па разметцы

Як вы разумееце выраз «змяненне формы дэталі»?

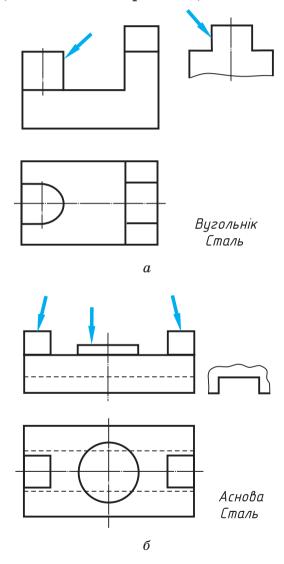
45*. Выканайце эскіз дэталі (рыс. 113), мысленна выдаліўшы выступы на дэталі (яны паказаны стрэлкамі), зрабіўшы замест іх выемку і адтуліну на тым жа месцы такіх самых формы і памераў.



Рыс. 113. Заданне для практыкаванняў

ΓΡ 4-2

Чарцёж дэталі


Выканайце чарцёж дэталі, у якой належыць выдаліць часткі па нанесенай разметцы (рыс. 114).

Рыс. 114. Заданне да графічнай работы № 4 Правообладатель Национальный институт образования

<u>ГР 4-3</u> Чарцёж дэталі

Выканайце чарцяжы дэталей, зрабіўшы замест выступаў, паказаных стрэлкамі, выемкі такіх са-

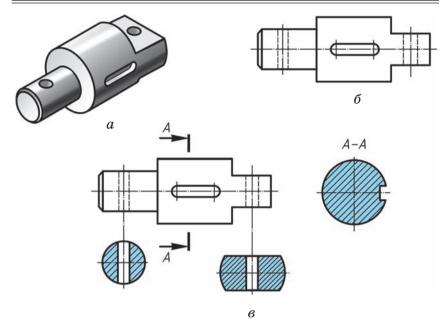
Рыс. 115. Заданне да графічнай работы № 4 Правообладатель Национальный институт образования

мых формы і памераў (рыс. 115, a і σ). Пабудуйце трэці выгляд дэталей.

Відарыс дэталі пры пабудове чарцяжа павялічце ў 2 разы ў параўнанні з дадзеным. Нанясіце памеры, узяўшы іх з чарцяжа.

46. З мэтай атрымання цэласнай сістэмы ўяўленняў аб пабудове чарцяжоў у прамавугольных праекцыях паўтарыце па падручніку § 8 і матэрыял у КТС «Выгляды».

VII. ПАБУДОВА ЧАРЦЯЖОЎ, ЯКІЯ ЗМЯШЧАЮЦЬ СЯЧЭННІ І РАЗРЭЗЫ

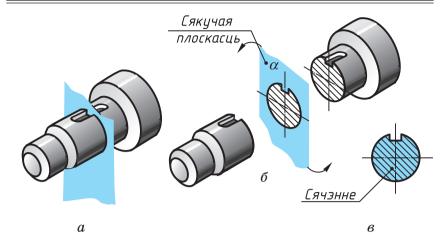

На вытворчасці і ў штодзённым жыцці сустракаюцца дэталі складанай формы, калі прымянення толькі выглядаў (як сродкаў графічнага паказу знешняй формы прадметаў на чарцяжах) бывае недастаткова. У гэтым выпадку для выяўлення геаметрычнай формы дэталі, і ў першую чаргу яе ўнутранага абрысу, ужываюць такія відарысы, як сячэнні і разрэзы.

§ 21. Чарцяжы, якія змяшчаюць сячэнні

21.1. Прызначэнне сячэнняў. Сячэннем называюць відарыс фігуры, якая атрымліваецца пры мысленным рассячэнні прадмета плоскасцю. Такі відарыс нараўне з выглядамі прымяняюць на чарцяжах для дэталей, калі ўзнікае неабходнасць у паказе іх папярочнай формы або тлумачэнні формы якога-небудзь элемента.

Разгледзьце наглядны відарыс дэталі, якая называецца валам (рыс. 116, a). Форма дэталі ўяўляе сабой цалкам спалучэнне цыліндраў розных дыяметраў і канічнай фаскі. Дэталь мае розныя паглыбленні, адтуліны. Чарцёж такой дэталі (рыс. 116, δ), нават калі ёсць яе аксанаметрычная праекцыя, не дае дастатковага ўяўлення аб элементах дэталі, іх форме і памерах.

Для поўнага паказу формы дэталі можна павялічыць колькасць выглядаў на чарцяжы, але Правообладатель Национальный институт образования



Рыс. 116. Прымяненне сячэнняў

ад гэтага чарцёж стане грувасткім і малазразумелым. Для выяўлення геаметрычнай формы паказанай дэталі, а таксама для памяншэння колькасці відарысаў на чарцяжы выкарыстаны сячэнні (рыс. 116, в).

- ?
- 1. Які відарыс называюць сячэннем?
- 2. Для чаго ўжываюць сячэнні?
- **21.2. Атрыманне сячэнняў.** ДАСТ абазначае сячэнне як відарыс фігуры, атрыманай у выніку мысленнага рассячэння прадмета плоскасцю. Плоскасць, якую выкарыстоўваюць для атрымання сячэння, называюць *сякучай*.

На рысунку 117 паказаны прыклад атрымання сячэння для выяўлення ў дэталі формы выемкі, якую называюць шпоначнай канаўкай.

Рыс. 117. Атрыманне сячэнняў

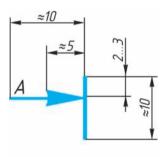
Дэталь у месцы яе мысленнага рассячэння плоскасцю ўмоўна раз'яднана. Сякучая плоскасць разам з фігурай сячэння павернута да яе сумяшчэння з плоскасцю чарцяжа (гл. стрэлкі на рыс. 117, б).

У сячэнні паказваюць толькі тую фігуру, якая атрымліваецца непасрэдна ў сякучай плоскасці (рыс. 117, в). На чарцяжы яе ўмоўна выдзяляюць штрыхоўкай тонкімі лініямі пад вуглом 45° да гарызантальнай лініі.

- ?
- 1. Як называецца плоскасць для атрымання сячэння?
- 2. Як выдзяляюць сячэнні на чарцяжы?
- 21.3. Размяшчэнне і абазначэнне сячэнняў на чарцяжы. Сячэнні можна размяшчаць на свабодным месцы фармату або накладзенымі на відарысы дэталі. Зыходзячы з гэтага, у залежнасці ад месца размяшчэння на чарцяжы сячэнні падзяляюць на вынесеныя і накладзеныя.

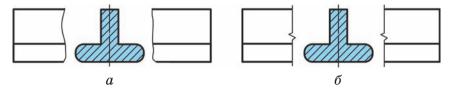
Вынесеныя сячэнні размяшчаюць па-за контурам відарыса дэталі на любым месцы поля чарцяжа (гл. рыс. 117, в). Іх лічаць пераважнымі, бо яны не загрувашчваюць відарыс лішнімі лініямі.

Контур вынесенага сячэння абводзяць суцэльнай тоўстай асноўнай лініяй той жа таўшчыні (s), што і таўшчыня лініі, прынятай для бачнага контуру відарыса.


Каб паказаць, у якім месцы праходзіць сякучая плоскасць, яе часам абазначаюць умоўна (гл. форзац I).

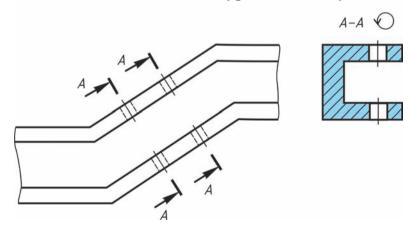

Для абазначэння вынесенага сячэння, як правіла, праводзяць разамкнутую лінію — два патоўшчаныя штрыхі (рыс. 118). Стрэлкі, якія паказваюць напрамак позірку, размяшчаюць каля знешніх канцоў разамкнутай лініі. Са знешняга боку стрэлак пішуць аднолькавыя вялікія лі-

тары рускага алфавіта. Сячэнні абазначаюць па тыпе A-A або B-B (гл. рыс. 116, θ).

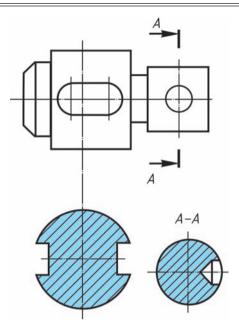

Калі сячэнне ўяўляе сабой сіметрычную фігуру і размешчана на працягу лініі сячэння (штрыхпункцірнай), то стрэлкі і літары не наносяць (гл. рыс. $116, \varepsilon$).

Вынесеныя сячэнні дапускаецца размяшчаць у разрыве аднаго і таго ж выгляду, г. зн. паміж яго часткамі (рыс. 119). Умоўны разрыў дэталі паказваюць суцэльнай хвалістай лі-

Рыс. 118. Лінія абазначэння сячэнняў

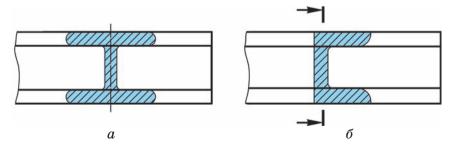

Рыс. 119. Вынесеныя сячэнні

ніяй (рыс. 119, a) або суцэльнай тонкай лініяй са зломам (рыс. $119, \delta$).


Па пабудове і размяшчэнні сячэнне павінна адпавядаць напрамку, які паказаны стрэлкамі. Аднак вынесеныя сячэнні дапускаецца размяшчаць і з паваротам, дадаючы пры гэтым да надпісу A-A або B-B умоўны графічны знак \bigcirc , што азначае «павернута» (рыс. 120).

Для некалькіх аднолькавых сячэнняў адной і той жа дэталі вычэрчваюць адно сячэнне, а лініі сячэнняў абазначаюць адной і той жа літарай (гл. рыс. 120).

Калі сякучая плоскасць праходзіць праз вось паверхні вярчэння, якая ўяўляе сабой адтуліну або паглыбленне, то контур гэтай адтуліны або


Рыс. 120. Вынесеныя сячэнні з паваротам Правообладатель Национальный институт образования

Рыс. 121. Вынесеныя сячэнні

паглыблення на сячэнні паказваюць цалкам (рыс. 121, сячэнне A-A).

Накладзеныя сячэнні сумяшчаюць з выглядам (рыс. 122). Контур відарыса на месцы размяшчэння накладзенага сячэння не перарываюць. Такія сячэнні не абазначаюць (рыс. 122, а). І толькі ў выпадку, калі сячэнне ўяўляе сабой

Рыс. 122. Накладзеныя сячэнні

несіметрычную фігуру, праводзяць штрыхі разамкнутай лініі і стрэлкі, але літарамі яго не абазначаюць (рыс. 122, δ).

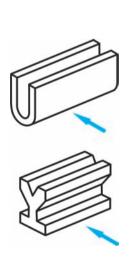
Контур накладзенага сячэння абводзяць суцэльнымі тонкімі лініямі таўшчынёй ад s/3 да s/2.

- 1. Якое сячэнне называюць вынесеным? накладзеным? Дзе яны размяшчаюцца на чарцяжы?
- 2. Якой лініяй абводзяць вынесенае сячэнне? накладзенае сячэнне?
- 3. Як абазначаюць сячэнне?

21.4. Графічныя абазначэнні матэрыялаў на сячэннях. Дэталі, іншыя вырабы ствараюць з розных матэрыялаў: металу, драўніны, пластмасы, шкла, гумы і інш. У стандарце АСКД прадугледжаны графічныя абазначэнні матэрыялаў у сячэннях. Некаторыя з іх прыведзены на рысунку 123.

Так, для паказу металаў і цвёрдых сплаваў выкарыстоўваюць штрыхоўку нахіленымі паралельнымі тонкімі лініямі пад вуглом 45° да лініі контуру відарыса або яго восі. Нахіл ліній можа быць прыняты ўправа або ўлева, але, як правіла, у адзін і той жа бок ва ўсіх сячэннях, якія адносяцца да чарцяжа паказанай дэталі.

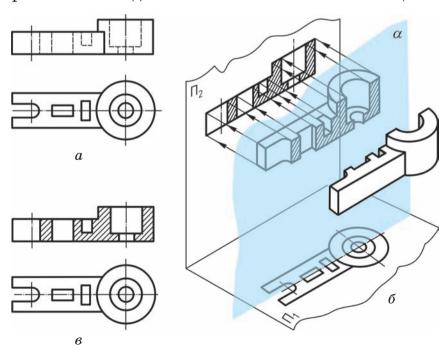
Рыс. 123. Графічныя абазначэнні матэрыялаў у сячэнні


Адлегласць паміж лініямі штрыхоўкі (шаг, або частата) выбіраюць 1...10 мм у залежнасці ад памераў плошчы штрыхоўкі. Частата штрыхоўкі павінна быць аднолькавай і раўнамернай для ўсіх сячэнняў гэтай дэталі. На вучэбных чарцяжах фармату A4, у рабочым сшытку гэта адлегласць можа быць роўнай 2...4 мм.

- 1. З якой мэтай выкарыстоўваюць графічнае абазначэнне матэрыялаў на сячэнні?
- 2. Як выконваюць штрыхоўку металу на сячэнні?

- 47. Карыстаючыся наглядным відарысам прадметаў, змешчаных на рысунку 124, начарціце ў рабочым сшытку галоўны выгляд (у напрамку, паказаным стрэлкай) з накладзеным сячэннем. Памеры вазьміце адвольныя.
- **48**. Выканайце эскіз дэталі (з натуры) з прымяненнем сячэнняў. Эскіз дэталі можа быць выкананы і па наглядным відарысе (рыс. 125, a і δ). Памеры вазьміце адвольныя.

Рыс. 124. Заданне для практыкаванняў



Рыс. 125. Заданне для практыкаванняў

§ 22. Чарцяжы, якія змяшчаюць разрэзы

22.1. Прызначэнне разрэзаў. Некаторыя дэталі, як і вырабы цалкам, маюць вельмі складаную ўнутраную геаметрычную форму. Вялікая колькасць штрыхавых ліній, калі іх выкарыстоўваюць на чарцяжы для паказу ўсіх нябачных элементаў дэталі, стварае дадатковыя цяжкасці для ўспрымання яе формы (рыс. 126, а). Для высвятлення ўнутранай формы дэталі па чарцяжы, выяўлення яе асобных частак і элементаў прымяняюць разрэзы.

Разрэз — гэта відарыс прадмета, мысленна рассечанага адной або некалькімі плоскасцямі.

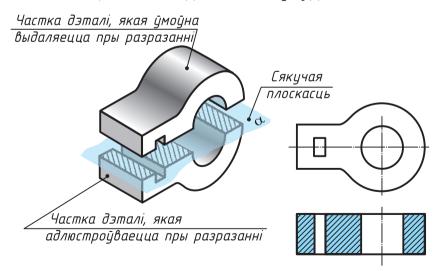
Рыс. 126. Атрыманне франтальнага разрэзу Правообладатель Национальный институт образования

Пры гэтым частка прадмета, размешчаная паміж назіральнікам і сякучай плоскасцю, лічыцца выдаленай (рыс. $126, \delta$). На разрэзе паказваюць тое, што знаходзіцца на сякучай плоскасці і па-за ёй (рыс. $126, \delta$).

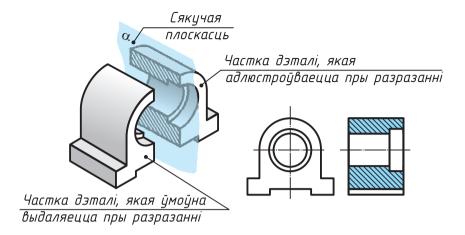
Разгледзім прыклад больш падрабязна. Няхай сякучая плоскасць α размешчана паралельна плоскасці Π_2 . Плоскасць α будзем лічыць празрыстай. Калі выдалім умоўна частку дэталі, размешчаную паміж назіральнікам і сякучай плоскасцю α (напрыклад, «ссунем» на сябе), то на відарысе ўбачым фігуру сячэння (яна выдзелена штрыхоўкай) і тыя часткі дэталі, якія знаходзяцца за сякучай плоскасцю.

Як змяніўся чарцёж дэталі пасля выкарыстання разрэзу? Як бачыце, выгляд зверху на чарцяжы не змяніўся (рыс. 126, в). У той жа час штрыхавыя лініі, якімі на галоўным выглядзе былі паказаны ўнутраныя абрысы, зараз абведзены суцэльнымі асноўнымі лініямі, бо яны сталі бачнымі. Фігура сячэння, якая ўваходзіць у разрэз, заштрыхавана. Але штрыхоўка нанесена толькі там, дзе суцэльныя часткі дэталі трапілі на сякучую плоскасць.

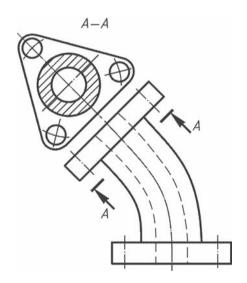
Лініі, якія знаходзяцца на пярэдняй (бачнай), г. зн. непаказанай, частцы дэталі, на разрэзе не дадзены.


- 1. Дайце азначэнне разрэзу.
- 2. Растлумачце прызначэнне разрэзаў.
- 3. Як зменіцца відарыс пасля выканання разрэзу?
- 4. Назавіце адрозненні разрэзу ад выгляду.
- 5. Ці ўваходзіць сячэнне ў склад разрэзу?
- 6. Як выдзяляецца фігура сячэння, якое ўваходзіць у разрэз?

22.2. Назва і абазначэнне разрэзаў. Разрэз дэталі, паказаны на рысунку 126, в, атрыманы з дапамогай адной плоскасці. Такія разрэзы называюць простымі. Сякучая плоскасць у гэтым выпадку размешчана паралельна франтальнай плоскасці праекцый. Таму разрэз называюць франтальным.

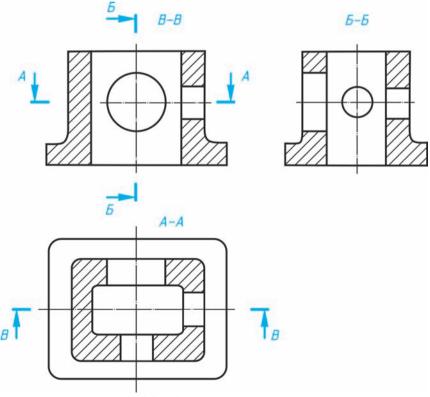

Разрэз, атрыманы пры перасячэнні прадмета плоскасцю, паралельнай гарызантальнай плоскасці праекцый (рыс. 127), называюць *гарызантальным*. Калі сякучая плоскасць паралельная профільнай плоскасці праекцый (рыс. 128), то разрэз называюць *профільным*.

Разрэзы могуць быць і *нахіленымі* (рыс. 129). Такія разрэзы атрымліваюць плоскасцямі, размешчанымі пад некаторым (не роўным 90°) вуглом да гарызантальнай плоскасці праекцый.

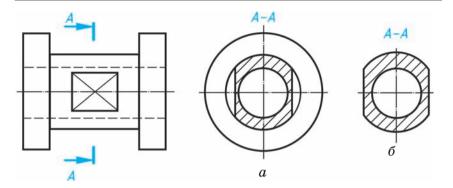

На адным чарцяжы дэталі можа быць некалькі разрэзаў. Прымяненне кожнага з іх павінна быць мэтазгодным і апраўданым.

Рыс. 127. Атрыманне гарызантальнага разрэзу Правообладатель Национальный институт образования

Рыс. 128. Атрыманне профільнага разрэзу


Рыс. 129. Нахілены разрэз

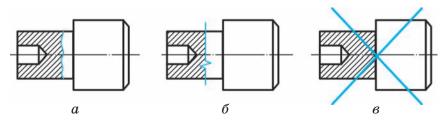
Разрэзы звычайна размяшчаюць у праекцыйнай сувязі: франтальны — на месцы галоўнага выгляду, профільны — на месцы выгляду злева, а гарызантальны — на месцы выгляду зверху.


У тым выпадку, калі сякучая плоскасць супадае з плоскасцю сіметрыі дэталі і разрэз размяшчаецца ў праекцыйнай сувязі, яго не абазначаюць.

Калі сякучая плоскасць не супадае з плоскасцю сіметрыі, разрэзы абазначаюць гэтак жа, як сячэнні, — разамкнутай лініяй. Стрэлкі з літарамі паказваюць напрамак позірку. Над разрэзам пішуць тыя ж літары праз працяжнік (рыс. 130).

Якое адрозненне паміж разрэзам і сячэннем? Уважліва разгледзьце рысунак 131, дзе паказаны разрэз (рыс. 131, a) і сячэнне (рыс. $131, \delta$) ад-

Рыс. 130. Абазначэнне разрэзаў Правообладатель Национальный институт образования



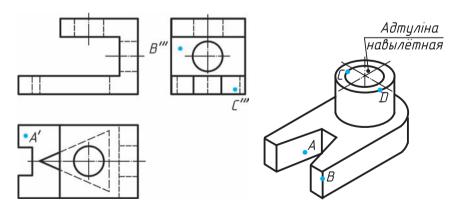
Рыс. 131. Адрозненне паміж разрэзам і сячэннем

ной і той жа дэталі. Як бачыце, на сячэнні паказана толькі тое, што размешчана непасрэдна на сякучай плоскасці. Пры пабудове разрэзу неабходна разам з фігурай сячэння даваць відарысы і тых частак дэталі, якія знаходзяцца за сякучай плоскасцю.

- 1. Якія разрэзы называюць простымі?
- 2. Якія разрэзы называюць гарызантальнымі? франтальнымі? профільнымі?
- 3. У якіх выпадках разрэзы не абазначаюць?
- 22.3. Мясцовыя разрэзы. Для больш дакладнага паказу формы дэталі ў якім-небудзь абмежаваным месцы выкарыстоўваюць разрэз, які называецца *мясцовым* (рыс. 132). На чарцяжы з дапамогай такога разрэзу паказаны форма і

Рыс. 132. Мясцовыя разрэзы Правообладатель Национальный институт образования

глыбіня адтуліны дэталі. У гэтым выпадку дастаткова абмежавацца разрэзам толькі той часткі дэталі, дзе знаходзіцца гэты элемент (напрыклад, адтуліна).


Мясцовы разрэз на выглядзе паказваюць суцэльнай хвалістай лініяй, таўшчыня якой — ад s/3 да s/2 (рыс. 132, a), або суцэльнай тонкай лініяй са зломам (рыс. 132, 6). Гэтыя лініі не павінны супадаць з іншымі лініямі на відарысе. На рысунку 132, 6 такая лінія супадае з лініяй контуру: дадзены відарыс няправільны.

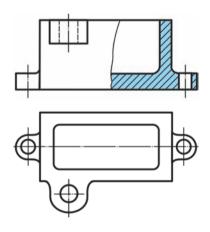
- 1. Які разрэз называюць мясцовым?
- 2. Калі прымяняюць мясцовы разрэз?
- 3. Якімі лініямі абмяжоўваюць мясцовы разрэз?

- **49.** Карыстаючыся трыма выглядамі дэталі (рыс. 133), пабудуйце франтальны разрэз. Нанясіце на чарцяжы праекцыі пунктаў, якіх не хапае. Усе пункты бачныя.
- 50. Выканайце чарцёж дэталі па яе наглядным відарысе з прымяненнем разрэзаў (рыс. 134). Нанясіце на чарцяжах абазначэнні пунктаў, размешчаных на паверхнях дэталей.

Рыс. 133. Заданне для практыкаванняў

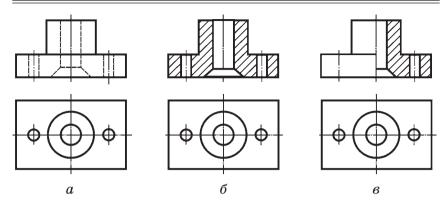
Рыс. 134. Заданне для практыкаванняў

§ 23. Злучэнне на чарцяжы выгляду і разрэзу


23.1. Злучэнне часткі выгляду і часткі разрэзу. Для адначасовага выяўлення ўнутранай і знешняй формаў дэталі дапускаецца злучаць на адным відарысе частку выгляду і частку адпаведнага разрэзу (рыс. 135). Гэтыя відарысы падзяляюць суцэльнай хвалістай лініяй, якую праводзяць ад рукі, або суцэльнай тонкай лініяй са зломам.

Чым жа выклікана неабходнасць прымянення менавіта такіх відарысаў? Разгледзьце рысунак 135. Калі на чарцяжы выканаць поўны

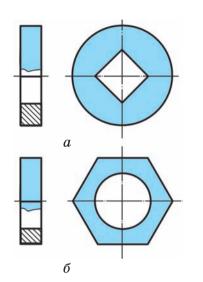
франтальны разрэз, то па адным выглядзе зверху нельга будзе меркаваць аб форме і вышыні верхняга вушка. На франтальным разрэзе яно не будзе паказана. Таму ў дадзеным выпадку лепш злучыць частку выгляду і частку разрэзу.



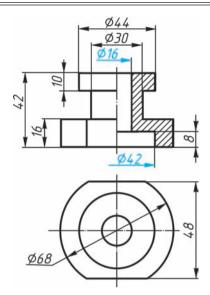
З якой мэтай на чарцяжы выкарыстоўваюць частку выгляду і частку разрэзу? Якой лініяй іх размяжоўваюць?

Рыс. 135. Злучэнне часткі выгляду і часткі разрэзу

23.2. Злучэнне палавіны выгляду і палавіны разрэзу. Калі выгляд і размешчаны на яго месцы разрэз уяўляюць сабой сіметрычныя фігуры, можна злучыць палавіну выгляду і палавіну разрэзу.



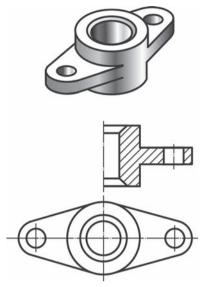
Рыс. 136. Злучэнне палавіны выгляду і палавіны разрэзу


На рысунку 136, a змешчаны галоўны выгляд і выгляд зверху дэталі. Па гэтых відарысах можна меркаваць у асноўным аб знешняй форме дэталі. Рысунак 136, δ змяшчае франтальны разрэз і выгляд зверху. Па гэтых відарысах лягчэй меркаваць аб унутранай будове дэталі, больш складана — аб знешняй форме. Калі ж аб'яднаць гэтыя два відарысы, г. зн. злучыць палавіну выгляду спераду (галоўнага выгляду) з палавінай франтальнага разрэзу, то можна меркаваць як аб знешняй, так і аб унутранай форме дэталі (рыс. 136, θ).

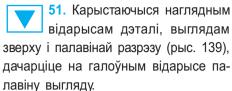
Пры выкананні такіх відарысаў варта мець на ўвазе, што мяжой паміж выглядам і разрэзам служыць вось сіметрыі, г. зн. штрыхпункцірная лінія. Разрэз на чарцяжы размяшчаюць справа ад восі сіметрыі або пад ёй. На палавіне выгляду штрыхавыя лініі, якія паказваюць контур унутраных абрысаў, не праводзяць.

Калі лінія контуру супадае з воссю сіметрыі, то злучаюць частку выгляду і частку разрэзу, раздзяляючы іх суцэльнай тонкай хвалістай лі-

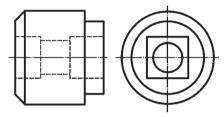
Рыс. 137. Злучэнне часткі выгляду і часткі разрэзу



Рыс. 138. Нанясенне памераў пры злучэнні палавіны выгляду і палавіны разрэзу

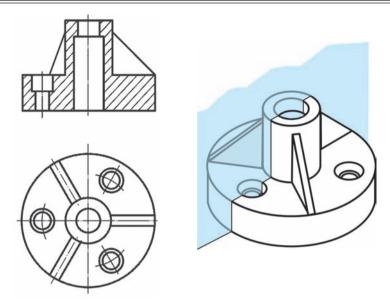

ніяй так, каб контурная лінія, аб якой ідзе размова, не знікла з чарцяжа (рыс. 137).

Калі на відарысе, дзе злучаны палавіна выгляду і палавіна разрэзу, неабходна нанесці памеры, то размерныя лініі, якія адносяцца да элемента дэталі, вычарчанага толькі да восі сіметрыі (напрыклад, адтуліны), праводзяць крыху далей ад восі і абмяжоўваюць стрэлкай з аднаго боку. Памер жа паказваюць поўны (Ø16, Ø42 на рыс. 138). Памеры знешняй формы дэталі паказваюць з боку выгляду, унутранай — з боку разрэзу.

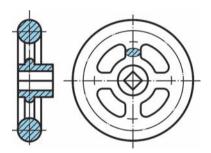

- ?
- 1. У якіх выпадках можна злучыць палавіну выгляду і палавіну разрэзу? Якой лініяй іх раздзяляюць?
- 2. Ці паказваюць на палавіне выгляду ўнутраныя абрысы прадмета?

Рыс. 139. Заданне для практыкаванняў

52. Па дадзеных двух выглядах дэталі (рыс. 140) выканайце чарцёж, які складаецца з палавіны выгляду і палавіны разрэзу (выгляд злева не вычэрчвайце). Нанясіце размерныя лініі.



Рыс. 140. Заданне для практыкаванняў


§ 24. Некаторыя асобыя выпадкі прымянення разрэзаў

24.1. Паказ тонкіх сценак і спіц на разрэзе. Існуе шмат умоўнасцей выканання разрэзаў. Так, калі сякучая плоскасць праходзіць уздоўж тонкай сценкі (канта жорсткасці) дэталі, то на чарцяжы яе паказваюць рассечанай, але незаштрыхаванай (рыс. 141).

Не заштрыхоўваюць таксама спіцы колаў, калі сякучая плоскасць праходзіць не ўпоперак, а ўздоўж іх. Разгледзьце рысунак 142. На ім прыведзены чарцёж махавічка. Як бачыце, заштрыхаванымі на разрэзе паказаны толькі вобад і

Рыс. 141. Прымяненне разрэзу пры паказе канта дэталі

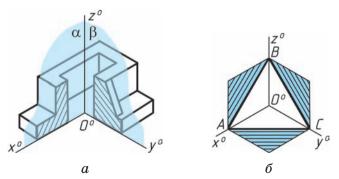
Рыс. 142. Прымяненне разрэзу пры паказе спіц колаў

цэнтральная частка махавічка, якая называецца калодкай. Спіцы засталіся незаштрыхаванымі, хоць і трапілі ў сякучую плоскасць.

Пры папярочным размяшчэнні сякучай плоскасці выканана накладзенае сячэнне спіцы і нанесена штрыхоўка.

- 1. У чым асаблівасць паказу ў разрэзе дэталей з тонкімі сценкамі?
- 2. У чым асаблівасць паказу спіц у разрэзе?

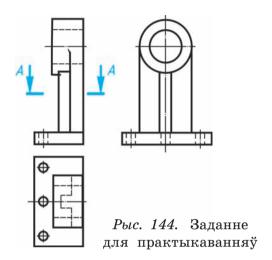
24.2. Прымяненне разрэзаў на тэхнічных рысунках. Разрэзы можна выкарыстоўваць і пры выкананні тэхнічных рысункаў. У гэтым выпадку яны служаць для выяўлення


ных рысункаў. У гэтым выпадку яны служаць для выяўлення ўнутраных абрысаў прадмета. З гэтай мэтай для пабудовы разрэзу выкарыстоўваюць дзве сякучыя плоскасці, якія супадаюць з плоскасцямі сіметрыі прадмета (рыс. 143, а).

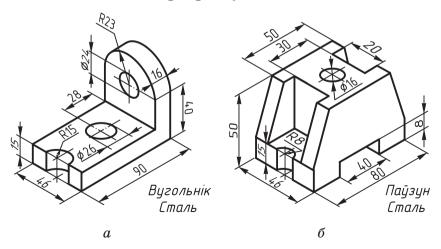
Лініі штрыхоўкі сячэнняў наносяць паралельна дыяганалі праекцыі квадрата, якая ляжыць у адпаведнай каардынатнай плоскасці, як паказана на рысунку 143, б. Стораны квадратаў паралельныя аксанаметрычным восям.

Фігуры сячэнняў, размешчаныя паралельна франтальнай і профільнай плоскасцям праекцый, штрыхуюць пад вуглом 60° да гарызантальнай прамой, а размешчаныя паралельна гарызантальнай плоскасці праекцый — гарызантальнымі прамымі.

З а ў в а г а. На тэхнічным рысунку спіцы махавічкоў і шківаў, канты жорсткасці і падобныя элементы, якія трапілі ў разрэз, штрыхуюць.

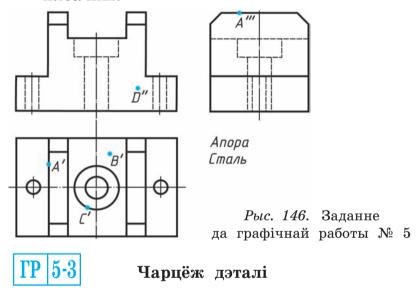

Як размяшчаюць сякучыя плоскасці пры паказе ўнутранай формы дэталі на тэхнічным рысунку?

Рыс. 143. Выкарыстанне разрэзаў на тэхнічных рысунках


53. Па чарцяжы дэталі (рыс. 144) пабудуйце франтальны разрэз, неабходную колькасць мясцовых разрэзаў і сячэнне *А—А*.

ΓΡ 5-1

Эскіз дэталі


Выканайце з натуры (або па наглядным відарысе — рыс. 145) эскіз дэталі з прымяненнем неабходных разрэзаў.


Рыс. 145. Заданне да графічнай работы № 5 Правообладатель Национальный институт образования

ГР | 5-2 Чарцёж дэталі

На чарцяжы выканайце неабходныя разрэзы дэталі (рыс. 146). Нанясіце размерныя лініі, пабудуйце праекцыі пунктаў, якіх не хапае. Пункт D — нябачны.

Пабудуйце выгляд злева дэталі і выканайце на чарцяжы мэтазгодныя разрэзы (рыс. 147).

Рыс. 147. Заданне да графічнай работы № 5 Правообладатель Национальный институт образования

VIII. ЧЫТАННЕ ЧАРЦЯЖОЎ, ЯКІЯ ЗМЯШЧАЮЦЬ УМОЎНАСЦІ І СПРАШЧЭННІ

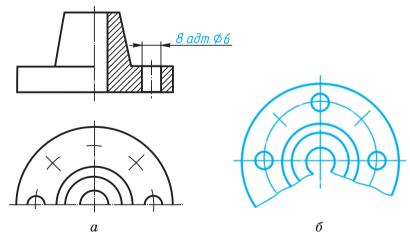
§ 25. Умоўнасці, спрашчэнніі абазначэнні на чарцяжах дэталей

25.1. Выбар на чарцяжы галоўнага відарыса. Пры пабудове чарцяжоў важна выбраць такую колькасць відарысаў, якая дазволіць атрымаць дастатковую інфармацыю аб вырабе. Пры гэтым варта імкнуцца да найменшай колькасці відарысаў, якія даюць неабходную характарыстыку паказанаму прадмету.

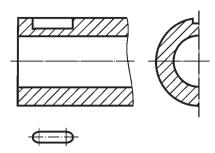
Колькасць відарысаў на чарцяжы залежыць ад складанасці канструкцыйнай формы прадмета. Часта для забеспячэння поўнага ўяўлення аб форме дэталі дастаткова аднаго відарыса — выгляду або разрэзу з прымяненнем прынятых знакаў і надпісаў (напрыклад, знакаў дыяметра, квадрата, паказу таўшчыні, даўжыні дэталі і інш.). Прыклады такіх відарысаў прыводзіліся ў падручніку раней.

Для выяўлення формы дэталі на чарцяжы вялікае значэнне мае дакладны выбар галоўнага відарыса. Такім відарысам можа быць выгляд, разрэз або іх злучэнне.

Галоўны відарыс павінен даваць найбольш поўнае ўяўленне аб форме дэталі, форме яе частак і іх памерах, г. зн. найбольш поўную інфармацыю. Ад дакладнага выбару галоўнага відарыса залежыць і колькасць відарысаў на чарцяжы. З гэтай мэтай прадмет імкнуцца размясціць адправообладатель Национальный институт образования

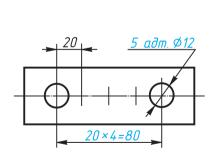

носна плоскасцей праекцыі так, каб большая частка яго элементаў на галоўным выглядзе адлюстравалася як бачная.

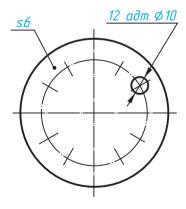
Звычайна на чарцяжы дэталь паказваюць у тым становішчы, якое яна займае пры апрацоўцы. Так, напрыклад, вось дэталей, атрыманых на станку тачэннем, на чарцяжы размяшчаюць гарызантальна (утулкі, валы і іншыя дэталі).



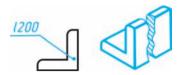
- 1. Успомніце, які відарыє называюць галоўным і чаму.
- 2. Якімі прынцыпамі варта кіравацца пры выбары галоўнага відарыса?

25.2. Няпоўныя відарысы. Пры выкананні на чарцяжы выглядаў і разрэзаў дазваляецца прымяняць *няпоўныя відарысы*. Так, калі выгляд або разрэз уяўляе сабой сіметрычную фігуру, то дазваляецца вычэрчваць палавіну дэталі да восевай лініі (выгляд зверху на рыс. 148, a) або крыху больш за палавіну відарыса з правядзеннем ліній абрыву (рыс. 148, δ).

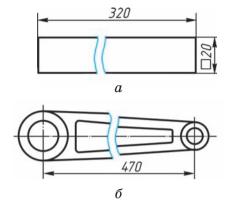

Рыс. 148. Няпоўныя відарысы дэталей Правообладатель Национальный институт образования


Рыс. 149. Умоўнасці пры няпоўных відарысах дэталей

Дазваляецца замест поўнага выгляду паказваць на чарцяжы толькі асобныя элементы дэталі, калі пры гэтым добра чытаецца яе форма. На рысунку 149 замест выгляду зверху прыведзены відарыс толькі шпоначнай канаўкі.


Калі на дэталі ёсць сіметрычна або раўнамерна размешчаныя элементы (напрыклад, адтуліны), то на чарцяжах дапускаецца паказваць адзін або два з іх, а для астатніх пазначаюць толькі цэнтры (рыс. 150 і 151). Перад размерным лікам паказваюць іх колькасць.

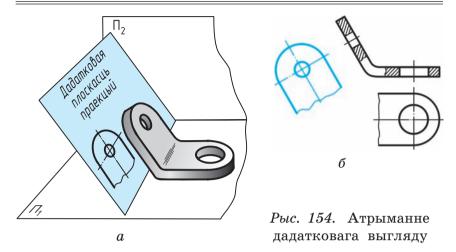
Рыс. 150. Відарыс раўнамерна размешчаных элементаў дэталі



Рыс. 151. Відарыс раўнамерна размешчаных элементаў дэталі

Рыс. 152. Абазначэнне даўжыні дэталі на відарысе

Пры паказе прадмета ў адной праекцыі дазваляецца ўмоўна абазначаць яго даўжыню. У гэтым выпадку перад


Рыс. 153. Чарцяжы дэталей з разрывам відарыса

размерным лікам пішуць лацінскую малую літару l (рыс. 152). Доўгія дэталі, якія маюць пастаяннае (рыс. 153, a) або заканамерна зменлівае папярочнае сячэнне (рыс. 153, δ), можна паказваць з разрывам. Размерную лінію пры гэтым не перарываюць, размерны лік павінен адпавядаць сапраўднаму памеру дэталі.

- 1. Як вы думаеце, які відарыє можна назваць няпоўным і чаму?
- 2. Якія няпоўныя відарысы можна прымяняць на чарцяжах? Прывядзіце прыклады.

25.3. Дадатковыя выгляды. Стандарт дазваляе выкарыстоўваць, акрамя асноўных плоскасцей праекцый, дадатковыя — для паказу такіх элементаў дэталей, якія праецыруюцца на асноўныя плоскасці са скажэннем. Дадатковую плоскасць размяшчаюць паралельна паверхні элемента дэталі, відарыс якой неабходна выканаць (рыс. 154, а). Атрыманы на гэтай плоскасці відарыс (рыс. 154, б) называюць датковым выглядам.

- 1. У якіх выпадках выкарыстоўваюць дадатковы выгляд?
- 2. Як выбіраюць плоскасць для пабудовы дадатковага выгляду?

25.4. Тэкставая і знакавая інфармацыя на чарцяжах. Чарцёж, як ужо вядома, уяўляе сабой сукупнасць графічных і знакавых кампанентаў, якія даюць поўную інфармацыю аб вырабе. Акрамя відарыса, памераў дэталі, назвы матэрыялу, на некаторых чарцяжах наносяць і даныя аб яе апрацоўцы.

Вядома, што пры любым спосабе стварэння дэталі яе паверхня не будзе зусім гладкай. Сукупнасць усіх няроўнасцей, што ўтвараюць рэльеф паверхні, называюць $\pmb{wyрпатасцю}$. Ступень шурпатасці паверхні на чарцяжы абазначаюць спецыяльнымі знакамі: \checkmark , \checkmark , \checkmark і інш. Разам са знакам паказваюць значэнне параметра або лікавае значэнне шурпатасці (гл. рыс. 2).

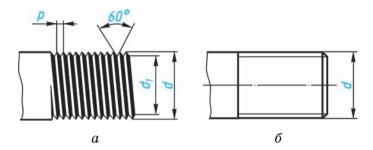
На тэхнічных чарцяжах можна заўважыць і размерныя лікі з дадатковымі запісамі: +0.5; $\varnothing 60\pm 0.02$ і інш. Што яны абазначаюць?

Вырабіць дэталь з абсалютна дакпаднымі памерамі практычна немагчыма. У выніку памеры будуць крыху іншымі, чым зададзеныя. Таму на чарцяжы побач з размерным лікам паказваюць адхіленні памеру ад зададзенага або гранічныя лічбы, паміж якімі могуць вагацца памеры.

ДАСТ устанаўлівае таксама і іншыя знакі, якія даюць характарыстыку дэталі або тлумачаць яе геаметрычную форму.

- 1. Якія надпісы могуць змяшчацца на чарцяжах?
- 2. Якія ўмоўныя знакі выкарыстоўваюцца на чарцяжах для паказу шурпатасці паверхні?

§ 26. Паказ і абазначэнне разьбы


26.1. Агульныя звесткі. Многія дэталі маюць на сваёй паверхні *разьбу*. З дапамогай разьбы злучаюцца дэталі. Разьба ёсць, напрыклад, на такіх дэталях, як болт, гайка, шруба і інш. Разьбу, прызначаную для злучэнняў дэталей, называюць *крапежнай*.

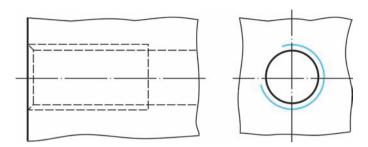
Разьба можа выкарыстоўвацца і для перадачы руху. Такую разьбу называюць *хадавой*. Хадавую разьбу можна бачыць у дамкраце, цісках, на вінтавым пад'ёмным крэсле і інш.

Разьбу наразаюць на станках або з дапамогай метчыкаў і плашак. Ад профілю разца залежыць і профіль разьбы. Найбольш распаўсюджана метрычная разьба (рыс. 155, а), якая мае трохвугольны профіль з вуглом 60° пры вяршыні. Лінейныя памеры яе выражаюцца ў міліметрах.

Існуюць і іншыя віды разьбы: прамавугольная, трапецаідальная і г. д.

Большасць пашыраных у выкарыстанні відаў разьбы стандартызавана.

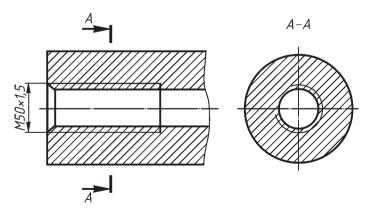
Рыс. 155. Паказ метрычнай разьбы



- 1. Якую разьбу называюць крапежнай? Якія дэталі маюць такую разьбу?
- 2. Які профіль можа мець разьба? Якую разьбу называюць метрычнай?
- **26.2.** Паказ разьбы. На чарцяжах разьбу паказваюць умоўна і вычэрчваюць спрошчана па правілах, вызначаных дзяржаўнымі стандартамі (рыс. 155, 6).

На стрыжні разьбу па знешнім (большым) дыяметры (d) паказваюць суцэльнымі тоўстымі асноўнымі лініямі як на выглядзе спераду, так і на выглядзе злева (рыс. 156), а па ўнутраным (d_1) — суцэльнай тонкай лініяй. Пры гэтым на выглядзе злева па ўнутраным дыяметры разьбы праводзяць тонкай лініяй дугу, прыблізна роўную 3/4 акружнасці. Гэта дуга можа быць разамкнута ў любым месцы, аднак не на цэнтравых лініях. Фаску пры гэтым на выглядзе зле-

Рыс. 156. Паказ разьбы на стрыжні Правообладатель Национальный институт образования



Рыс. 157. Паказ разьбы ў адтуліне

ва не паказваюць (гл. рыс. 156). Суцэльную тонкую лінію на выглядзе спераду праводзяць да канца відарыса, г. зн. яна перасякае лінію мяжы фаскі.

Унутраны дыяметр разьбы d_1 пры яе вычэрчванні ўмоўна прымаюць роўным 0.85 ад знешняга дыяметра (d).

Калі разьба паказваецца як нябачная (напрыклад, у адтуліне), то яна абазначаецца штрыхавымі лініямі і па знешнім, і па ўнутраным дыяметры (рыс. 157). Разьбу ў адтуліне на разрэзе (рыс. 158) паказваюць суцэльнымі тонкімі лінія-

Рыс. 158. Паказ разьбы ў адтуліне на разрэзе. Абазначэнне разьбы Правообладатель Национальный институт образования

мі па знешнім і суцэльнымі тоўстымі асноўнымі— па ўнутраным дыяметры.

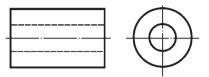
Штрыхоўку на разрэзе заўсёды даводзяць да суцэльнай тоўстай лініі. Мяжу бачнай разьбы праводзяць да лініі яе знешняга дыяметра і паказваюць суцэльнай тоўстай асноўнай лініяй (гл. рыс. 158).

Як умоўна паказваюць разьбу на стрыжні і ў адтуліне?

26.3. Абазначэнне разьбы. Тып разьбы і асноўныя памеры — знешні дыяметр d і шаг p (шаг разьбы — гэта адлегласць паміж яе суседнімі віткамі) — паказваюць на чарцяжах надпісам. Гэты надпіс называюць абазначэннем разьбы. Напрыклад, надпіс $M50\times1,5$ абазначае: разьба метрычная, знешні дыяметр — 50 мм, шаг — 1,5 мм. Прычым у абазначэнні паказваюць толькі дробны шаг разьбы, а буйны — не паказваюць. Звесткі аб дыяметрах і шагах разьбы змешчаны ў табліцах ДАСТа.

Пры абазначэнні разьбы вынасныя лініі праводзяць ад знешняга дыяметра (гл. рыс. 158).

Якія даныя ўваходзяць у абазначэнне разьбы?


54. На рысунку 159 паказаны цыліндрычны стрыжань. Выканайце ў рабочым сшытку эскіз дэталі, паказаўшы на палавіне даўжыні стрыжня метрычную разьбу.

Pыс. 159. Заданне для практыкаванняў Правообладатель Национальный институт образования

55. Выканайце ў рабочым сшытку эскіз утулкі (рыс. 160), паказаўшы на ўнутранай цыліндрычнай паверхні дэталі разьбу. Замест выгляду спераду выкарыстайце разрэз.

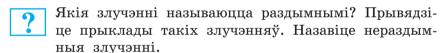
Рыс. 160. Заданне для практыкаванняў

ІХ. ЧАРЦЯЖЫ ЗБОРАЧНЫХ АДЗІНАК

§ 27. Чарцяжы злучэнняў дэталей

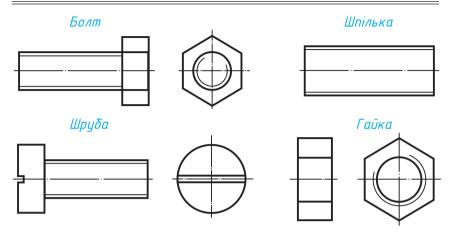
27.1. Агульныя звесткі аб злучэннях дэта- лей. Для зборкі вырабаў з гатовых дэталей прымяняюць розныя віды злучэнняў. Злучэнні могуць быць як **раздымнымі**, якія можна разабраць без разбурэння і пашкоджання, так і жорсткімі, **нераздымнымі** (гл. дадатак 11).

Прыкладамі раздымных злучэнняў з'яўляюцца разьбовыя. Яны атрымліваюцца накручваннем адной дэталі на другую або з дапамогай крапежных дэталей: балтоў, гаек, шпілек, шруб (рыс. 161) і інш. Да раздымных адносяць таксама шпоначныя, штыфтавыя, шплінтавыя і іншыя злучэнні.


Рыс. 161. Крапежныя дэталі Правообладатель Национальный институт образования

Нераздымныя злучэнні: зварныя, заклёпачныя, злучэнні пайкай, склейваннем.

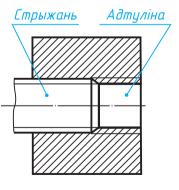
Злучэнні, якія часцей сустракаюцца ў механізмах розных машын, называюць *тыпавымі*.


Канструкцыя крапежных дэталей, а таксама іх памеры вызначаны стандартам, г. зн. стандартызаваныя. Гэта акалічнасць дазваляе замяняць адну дэталь іншай. Уласцівасць дэталей, якая стварае магчымасць іх замены падчас эксплуатацыі або рамонту без індывідуальнай падгонкі і апрацоўкі, называюць узаемазамяняльнасцю.

Звесткі аб стандартных дэталях прыводзяць у спецыяльных табліцах. Паколькі канструкцыя гэтых дэталей вызначана стандартам, гэта акалічнасць дазваляе выконваць іх на спецыялізаваных прадпрыемствах.

27.2. Паказ крапежных дэталей на чарцяжах. Адпаведныя стандарты ўстанаўліваюць і правілы паказу крапежных дэталей. Так, вычэрчваючы іх на зборачным чарцяжы, можна не паказваць фаскі на шасцігранных і квадратных галоўках балтоў і гаек, а таксама фаскі на стрыжні балта, шпількі, шрубы. Разьбу на балце, шпільцы і шрубе паказваюць па ўсёй даўжыні стрыжня. Такі відарыс называюць спрошчаным (рыс. 162).

На зборачных чарцяжах балтавое, шпілечнае і шрубавае злучэнні выконваюць па адносных памерах. Гэта значыць, што велічыню асобных элементаў дэталей вызначаюць у залежнасці ад памеру знешняга дыяметра (d) разьбы. У гэтым


Рыс. 162. Відарыс крапежных дэталей

выпадку значна паскараецца праца па выкананні чарцяжа. Неабходныя даныя для пабудовы атрымліваюць з даведнікаў.

Памеры крапежных дэталей на зборачных чарцяжах не наносяць. Адпаведныя даныя аб іх запісваюць у спецыяльнай табліцы, так званай спецыфікацыі.

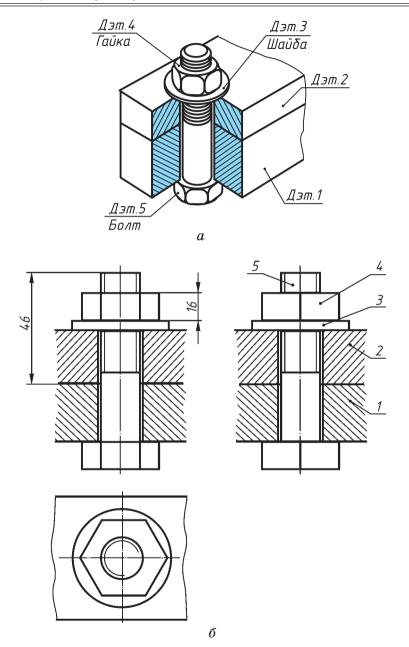
На разрэзе ў месцы злучэння дзвюх дэталей (рыс. 163) у адтуліне паказваюць толькі тую ча-

стку разьбы, якая не закрыта стрыжнем, пры гэтым суцэльныя тоўстыя асноўныя лініі, якія адпавядаюць выступам разьбы на стрыжні, пераходзяць у суцэльныя тонкія лініі, што адпавядаюць упадзінам разьбы ў адтуліне. Суцэльныя тонкія лініі, якія адпавядаюць упадзінам разьбы на стрыжні, пераходзяць у суцэльныя тоўстыя

Рыс. 163. Відарыс злучэння дзвюх дэталей на разрэзе

асноўныя лініі, што адпавядаюць выступам разьбы ў адтуліне.

Стандарт устанаўлівае таксама правілы паказу і абазначэння нераздымных злучэнняў. Гэтыя даныя змяшчающие ў даведачных табліцах.

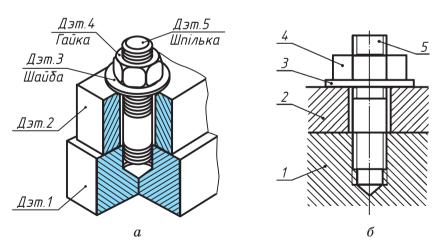

Як паказваецца разьба ў адтуліне на разрэзе?

27.3. Паказ балтавых, шпілечных і шрубавых злучэнняў. З лучэнне балтом паказана на рысунку 164, а. Для злучэння дзвюх дэталей (дэт. 1 і дэт. 2) у іх прасвідроўваюць адтуліны крыху большага памеру, чым памер дыяметра балта. У балтавое злучэнне ўваходзяць болт (5), гайка (4) і шайба (3). Шайба — падкладка пад гайку, якая засцерагае паверхні злучаемых дэталей ад пашкоджанняй і служыць для іншых мэт. Тыпы і памеры шайб устаноўлены ДАСТам.

Чарцёж злучэння балтом змешчаны на рысунку 164, б. Адлюстраваны на ім зазор паміж стрыжнем балта і адтулінай можна не паказваць.

Звярніце ўвагу, што на разрэзе злучаемыя дэталі (дэт. 1 і дэт. 2) заштрыхаваны ў розныя бакі. Балты, калі сякучая плоскасць накіравана ўздоўж іх восей, на чарцяжы паказваюць нерассечанымі. Нерассечанымі паказваюць таксама гайкі і шайбы.

У спецыфікацыі для балтоў паказваюць знешні дыяметр і тып разьбы, даўжыню стрыжня і нумар стандарту. Напрыклад, запіс «Болт М12×1,25×60» азначае: болт з метрычнай разьбой $\varnothing 12$ мм, шаг — 1,25 (дробны), даўжыня стрыжня — 60 мм. (Тут і далей для спрашчэння запісу нумары стандартаў на крапежныя дэталі не прыведзены.)

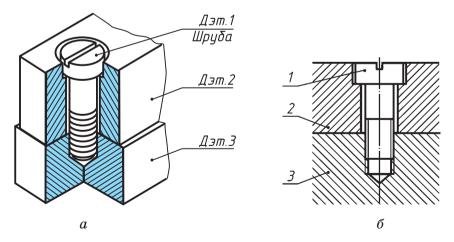


Рыс. 164. Спрошчаны відарыс балтавога злучэння

Для гайкі паказваюць дыяметр і тып разьбы. Так, запіс «Гайка М16» азначае: гайка з метрычнай разьбой, якая мае знешні дыяметр 16 мм, шаг разьбы буйны. Для шайбаў паказваюць дыяметр балта. Запіс «Шайба 12» азначае: шайба для балта са знешнім дыяметрам 12 мм.

Злучэнне шпілька й паказана на рысунку 165, а. Як крапежная дэталь шпілька ўяўляе сабой стрыжань, які мае разьбу на абодвух канцах. Адным канцом шпілька на ўсю даўжыню разьбы ўкручваецца ў глухую (ненавылётную) адтуліну з разьбой у дэталі (1). На другі канец накручваюць гайку, пад якую падкладваюць шайбу. Такім чынам прыціскаюць адну да адной дэталі, якія трэба змацаваць (дэт. 1 і дэт. 2). Адтуліна ў дэталі (2) мае крыху большы дыяметр, чым шпілька.

Чарцёж злучэння шпількай паказаны на рысунку 165, δ .


Рыс. 165. Спрошчаны відарыс шпілечнага злучэння

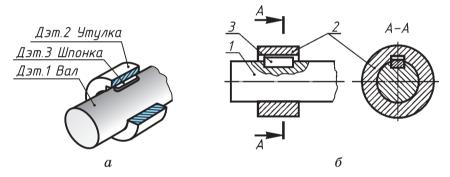
Лінію, якая вызначае мяжу разьбы на ніжнім канцы шпількі, заўсёды праводзяць на ўзроўні паверхні дэталі, у якую ўкручана шпілька (дэт. 1). Штрыхоўку даводзяць да суцэльнай тоўстай асноўнай лініі, а не да тонкай.

Абазначэнне «Шпілька $M10\times60$ » варта разумець так: шпілька мае метрычную разьбу, знешні дыяметр яе — 10 мм, даўжыня — 60 мм (без укручанага канца).

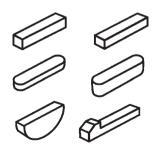
3 л у ч э н н е ш р у б а й паказана на рысунку 166. Шруба (1) устаўляецца праз адтуліну верхняй дэталі (2) і ўкручваецца ў ніжнюю дэталь (3). Запіс на чарцяжы «Шруба $M12\times40$ » азначае: шруба з метрычнай разьбой, знешні дыяметр якой — 12 мм, даўжыня шрубы — 40 мм.

Форма галоўкі шрубы бывае рознай.

Рыс. 166. Спрошчаны відарыс шрубавага злучэння



- 1. Якія злучэнні называюцца балтавымі? шпілечнымі? шрубавымі?
- 2. Назавіце дэталі, якія ўваходзяць у балтавыя, шпілечныя і шрубавыя злучэнні.


27.4. Паказ шпоначных і штыфтавых злучэнняў. Шпонка прызначана для злучэння вала з пасаджанай на яго дэталлю — шківам, зубчастым колам, махавіком і інш.

Каб шкіў вярцеўся разам з валам, на абедзвюх дэталях праразаюць пазы (шпоначныя канаўкі), у якія закладваюць шпонку (рыс. 167, *a*).

Чарцёж шпоначнага злучэння змешчаны на рысунку 167, *б*. Некаторыя віды шпонак паказаны на рысунку 168. Як бачыце,

Рыс. 167. Зборачны чарцёж шпоначнага злучэння

Рыс. 168. Віды шпонак

шпонка можа мець прызматычную форму (у тым ліку са скругленымі тарцамі), клінавую, сегментную.

На зборачных чарцяжах шпонку паказваюць нерассечанай. Так робяць у тым выпадку, калі сякучая плоскасць праходзіць уздоўж суцэльнай (непустацелай) дэталі.

Рыс. 169. Зборачны чарцёж злучэння штыфтам

Памеры шпонак, як і памеры шпоначных канавак, стандартызаваныя.

Штыфт — цыліндрычны або канічны стрыжань, які выкарыстоўваецца для замацавання і фіксацыі дэталей. На рысунку 169, а паказана штыфтавае злучэнне дэталей. Штыфт (дэт. 3) знаходзіцца ў адтуліне, якая адначасова прасвідравана ў корпусе (дэт. 1) і ў вале (дэт. 2).

На зборачных чарцяжах штыфты ў разрэзе паказваюць нерассечанымі, калі сякучая плоскасць праходзіць уздоўж іх восі (рыс. 169, б).

- 1. З якой мэтай выкарыстоўваюцца шпоначныя і штыфтавыя злучэнні?
- 2. Як абазначаецца шпонка на чарцяжы?

56. Выканайце, карыстаючыся рыс. 164, эскіз злучэння балтом пры ўмове, што дэталі, якія змацоўваюць, маюць таўшчыню па 15 мм, дыяметр разьбы балта роўны 10 мм і даўжыня *l* стрыжня балта — 45 мм.

З а ў в а г а. Для вызначэння памераў крапежных дэталей можна выкарыстоўваць суадносіны элементаў разьбовых дэталей у залежнасці ад памеру знешняга дыяметра разьбы (d) (яны дадзены ў дадатку 6).

Па ім можна вычарціць балтавое злучэнне.

57. Прачытайце ў Інтэрнэце інфармацыю аб злучэннях дэталей. Правообладатель Национальный институт образования

§ 28. Прызначэнне і змест чарцяжоў зборачных адзінак

28.1. Агульныя звесткі аб вырабах і канструктарскіх дакументах. Раней мы вызначылі, што выраб — гэта прадмет або набор прадметаў вытворчасці, якія атрымліваюць на прадпрыемстве. Згодна са стандартам, вырабы падзяляюць на дэталі, зборачныя адзінкі і інш.

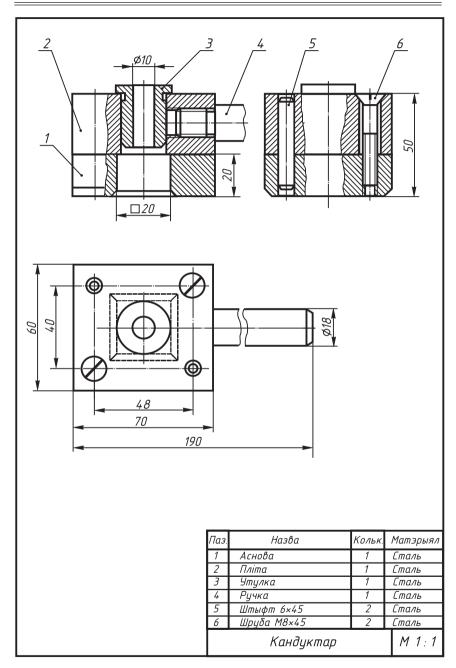
З прыкладамі дэталей мы сустракаліся неаднаразова пры пабудове і чытанні чарцяжоў. Зараз мы будзем весці размову пра зборачныя адзінкі.

Зборачнай адзінкай называюць выраб, састаўныя часткі якога павінны быць злучаны паміж сабой на прадпрыемстве-вытворцы шляхам зборачных аперацый. Такімі зборачнымі аперацыямі з'яўляюцца скручванне, кляпанне, зварка, склейванне, паянне і інш.

Для атрымання вырабу, вызначэння яго складу і будовы, а таксама даных для яго эксплуатацыі, кантролю, рамонту служаць розныя канструктарскія дакументы.

Канструктарскія дакументы могуць быць графічнымі (чарцяжы, схемы і інш.) і тэкставымі (спецыфікацыі, тэхнічныя ўмовы, тлумачальныя запіскі і інш.).

У залежнасці ад стадыі распрацоўкі канструктарскія дакументы падзяляюць на *праектныя* (чарцяжы агульнага віду, тлумачальныя запіскі) і *рабочыя* (чарцяжы дэталей, зборачныя чарцяжы), прызначаныя для стварэння, зборкі, кантролю вырабаў.


- 1. Дайце азначэнне вырабу, зборачнай адзінцы.
- 2. Для чаго служаць канструктарскія дакументы?
- 3. Якія віды канструктарскіх дакументаў вы велаеце?
- 4. Якія чарцяжы адносяць да канструктарскіх дакументаў?

28.2. Зборачныя чарцяжы. Зборачным чарцяжом называюць дакумент, які змяшчае відарыс зборачнай адзінкі і іншыя даныя, неабходныя для яе зборкі і кантролю (рыс. 170). Па зборачным чарцяжы выконваюць злучэнне (зборку) дэталей у выраб (зборачную адзінку) пасля таго, як гэтыя дэталі выкананы па іх рабочых чарцяжах.

На зборачным чарцяжы над асноўным надпісам змяшчаюць табліцу, у якой паказваюць назвы ўсіх састаўных частак зборачнай адзінкі. На такім чарцяжы наносяць нумары пазіцый, пад якімі значацца ў табліцы састаўныя часткі вырабу, г. зн. дадзенай зборачнай адзінкі.

Нумары пазіцый (1, 2 і г. д.) размяшчаюць над кароткімі гарызантальнымі лініямі-паліцамі. Гэтыя лініі злучаюцца з відарысам з дапамогай ліній-вынасак, якія заканчваюцца кропкай на відарысе той дэталі, нумар якой нанесены на лініі-паліцы. Лініі-вынаскі і лініі-паліцы праводзяць суцэльнымі тонкімі лініямі.

Каб знайсці відарыє той ці іншай дэталі, якая ўваходзіць у выраб, вызначаюць па табліцы яе нумар, адшукваюць яго на чарцяжы і па лініівынасцы знаходзяць яго відарыє. Лічбы, якія абазначаюць пазіцыі, павінны быць большымі за лічбы размерных лікаў.

Рыс. 170. Чарцёж зборачнай адзінкі «кандуктар» Правообладатель Национальный институт образования

Табліцу, якая змяшчае асноўныя даныя пра дэталі, што ўваходзяць у выраб, называюць *спецыфікацыяй*. Яе выконваюць на асобным лісце. На вучэбных чарцяжах мы будзем прымяняць спрошчаную форму спецыфікацыі, размяшчаючы яе над асноўным надпісам.

- ?
- 1. Які чарцёж называюць зборачным?
- 2. Для чаго служыць спецыфікацыя? Як па спецыфікацыі адшукаць на чарцяжы відарыс патрэбнай дэталі?
- 28.3. Асаблівасці зборачных чарцяжоў. Зборачны чарцёж змяшчае толькі тыя звесткі аб вырабе, якія неабходны спецыялісту (напрыклад, слесару-зборшчыку) для зборкі раней зробленых дэталей у зададзенай паслядоўнасці ў адзін вузел або зборачную адзінку, г. зн. у механізм, машыну і інш.

Асаблівасцю зборачных чарцяжоў з'яўляецца тое, што яны павінны ўтрымліваць памеры, неабходныя для правільнага размяшчэння дэталей у вырабе адна адносна адной, для ўстаноўкі вырабу (установачныя памеры), далучэння яго да іншага вырабу (далучальныя памеры). Наносяць таксама памеры, якія вызначаюць габарыты вырабу.

Зборачны чарцёж разам з выглядамі ўтрымлівае неабходную колькасць разрэзаў, іншых умоўнасцей. Да такіх умоўнасцей адносяцца відарысы дэталей у крайнім або прамежкавым становішчы, відарысы ўшчыльняльных прыстасаванняў, крапежных дэталей, аднолькавых элементаў і інш.

Прыклад зборачнага чарцяжа паказаны на рысунку 170. Як чытаць такія чарцяжы, мы разгледзім пазней.

Часам, каб паскорыць стварэнне простага вырабу, распрацоўваюць толькі зборачны чарцёж, па якім выконваюць чарцяжы дэталей. У гэтым выпадку зборачны чарцёж павінен утрымліваць такую інфармацыю, карыстаючыся якой можна вызначыць форму, памеры і іншыя даныя нестандартных дэталей і выканаць іх чарцяжы.

Назавіце асаблівасці зборачных чарцяжоў, якія адрозніваюць іх ад чарцяжоў дэталей.

§ 29. Чытанне зборачных чарцяжоў. Дэталіраванне

29.1. Чытанне чарцяжоў. Працэс чытання чарцяжа зборачнай адзінкі (г. зн. зборачнага чарцяжа) заключаецца ў атрыманні інфармацыі аб паказаным на ім вырабе. Гэта інфармацыя ўключае даныя аб прызначэнні, будове, прынцыпе работы вырабу і інш.

Чытанне чарцяжа павінна праходзіць у наступнай паслядоўнасці.

- 1. Вызначаюць назву вырабу, маштаб відарыса і іншыя звесткі, атрыманыя з асноўнага надпісу, чытаюць тлумачальную запіску, тэхнічныя ўмовы і інш.
- 2. Знаёмяцца з відарысамі, прыведзенымі на чарцяжы, іх складам (выгляды, разрэзы, сячэнні і інш.), прызначэннем кожнага відарыса на чарцяжы вырабу. Калі ёсць неабходнасць, высвят-

ляюць становішча плоскасцей, з дапамогай якіх выкананы разрэзы і сячэнні, наяўнасць мясцовых і дадатковых выглядаў і інш.

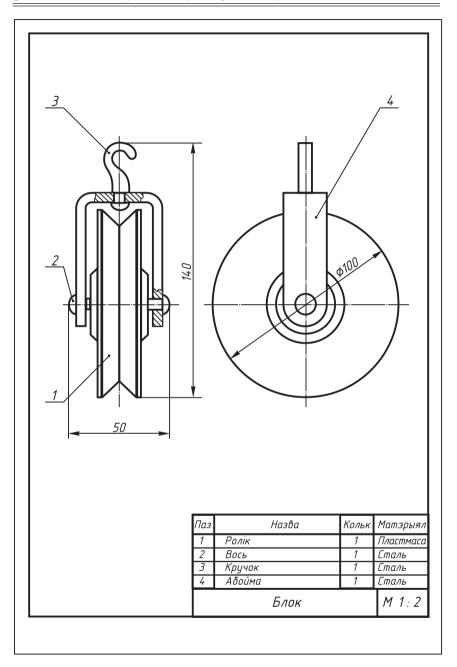
- 3. Вывучаюць састаўныя часткі вырабу. Па спецыфікацыі высвятляюць назвы дэталей і іх колькасць. Па нумарах пазіцый знаходзяць відарысы дэталей на чарцяжы, усведамляюць іх форму. Каб па чарцяжы лягчэй было ўявіць сабе форму асобных частак вырабу, штрыхоўку размешчаных побач (г. зн. сумежных) дэталей выконваюць з нахілам у розныя бакі або змяняюць адлегласць паміж штрыхамі.
- 4. Вывучаюць канструкцыю вырабу. Пасля вызначэння геаметрычнай формы асобных дэталей высвятляюць іх узаемнае размяшчэнне, спосабы і характар злучэння паміж сабой, месцы злучэнняў і інш.
- 5. Вызначаюць парадак і паслядоўнасць зборкі і разборкі вырабу.

Разгледзім прыклад чытання чарцяжа. Звернемся да нагляднага відарыса зборачнай адзінкі — кандуктара (рыс. 171), чарцёж якога змешчаны на рысунку 170.

Кандуктар — прыстасаванне, з дапамогай якога атрымліваюць (свідруюць) адтуліны ў дэта-

лях. Ён дазваляе падчас работы дакладна накіраваць інструмент без папярэдняй разметкі. Гэту інфармацыю можна атрымаць з даведнікаў, іншай літаратуры.

Чарцёж выкананы ў маштабе 1:1. Ён мае галоўны выгляд і выгляд злева з мясцовымі разрэзамі, а таксама выгляд зверху. Мясцовыя разрэзы выкарыстаны для паказу характару злучэнняў дэталей, якія ўваходзяць у выраб.


Атрымаем з чарцяжа інфармацыю аб састаўных частках вырабу. Такімі дэталямі ў кандуктары з'яўляюцца аснова (дэт. 1) і пліта (дэт. 2). Аснова і пліта злучаны дзвюма шрубамі (дэт. 6) і двума штыфтамі (дэт. 5). Шрубы і штыфты — стандартныя дэталі, якія маюць свае абазначэнні па ДАСТу.

У пліту ўпрасавана накіравальная ўтулка (дэт. 3) і ўкручана ручка (дэт. 4). Ручка злучана з плітой пры дапамозе разьбы.

Карыстаючыся чарцяжом, можна вызначыць геаметрычную форму дэталей, якія ўваходзяць у выраб.

Першапачатковая форма асновы — паралелепіпед, у якім ёсць 4 адтуліны для злучэння дэталі з плітой. Дзве з гэтых адтулін маюць разьбу М8. Па цэнтры асновы праходзіць яшчэ адна адтуліна — яна мае прызматычную форму з фаскай.

Форма пліты аналагічная форме асновы, але ў ёй ёсць цыліндрычная адтуліна з разьбой, куды ўкручана ручка. Адтуліна, якая праходзіць па цэнтры, — таксама цыліндрычная, але без разьбы.

Рыс. 172. Заданне для практыкаванняў Правообладатель Национальный институт образования

Утулка мае цыліндрычную форму з фаскай і праточкай. Ручка (з разьбой) таксама цыліндрычнай формы з дзвюма фаскамі і праточкай (гл. рыс. 171).

Габарытныя памеры вырабу $190 \times 60 \times 50$ мм.

Атрымаўшы гэту інфармацыю па чарцяжы, можна зрабіць выснову, што пры свідраванні адтулін выступ апрацоўваемай дэталі ўстаўляюць у адтуліну асновы, накіроўваючы свердзел праз утулку зверху.

У якой паслядоўнасці чытаюць зборачныя чарцяжы?

- 58. Знайдзіце ў Інтэрнэце матэрыял аб зборачных чарцяжах.
- 59. Прачытайце змешчаны на рысунку 172 чарцёж, выкарыстоўваючы разгледжаную раней паслядоўнасць.

29.2. Дэталіраванне. Дэталіраваннем называюць працэс выканання чарцяжоў асобных дэталей па чарияжы зборачнай адзінкі.

Разгледзім парадак дэталіравання чарцяжа. Чарцяжы стандартных дэталей не выконваюцца. Перш чым прыступіць да выканання чарцяжоў нестандартных дэталей, неабходна прачытаць чарцёж у той паслядоўнасці, якую мы разгледзелі раней (гл. п. 29.1).

Карысна мысленна «разабраць» выраб на састаўныя часткі, вылучыць стандартныя дэталі.

Пры дэталіраванні кожную дэталь вычэрчваюць на асобным лісце паперы, фармат якога залежыць ад складанасці дэталі, неабходнай колькасці відарысаў для выяўлення яе формы, выкарыстанага маштабу відарыса і інш. Памеры дэталі атрымліваюць па чарцяжы, часам звяртаючыся да вымярэння іх на відарысе.

Перад выкананнем чарцяжоў неабходна высветліць, колькі відарысаў і якіх (выгляды, разрэзы, сячэнні) неабходна прымяніць для паказу формы дэталі (якія мясцовыя выгляды і разрэзы могуць быць пры гэтым выкарыстаны).

Пры выкананні чарцяжоў дэталей нельга кіравацца колькасцю відарысаў, дадзеных на чарцяжы зборачнай адзінкі. На чарцяжах дэталей іх можа быць і менш, і больш.

Памятайце, што пры выкананні чарцяжоў дэталей, асабліва пры нанясенні памераў, неабходна карыстацца даведачнымі дапаможнікамі. Так, памеры пазоў (канавак) для шпонак, памеры разьбовых вырабаў выбіраюцца ў адпаведнасці з ДАСТамі.

Маючы чарцяжы нестандартных дэталей, іх можна вырабіць, а затым з іх і са стандартных дэталей па зборачных чарцяжах сабраць гатовы выраб.

- 1. Што ўяўляе сабой працэс дэталіравання?
- 2. У якой паслядоўнасці выконваюць дэталіраванне?

60. Выканайце чарцяжы (або эскізы) 2—3 дэталей па дадзеным чарцяжы (гл. рыс. 172). Памеры, якіх не хапае, вызначце шляхам вымярэння дэталей на відарысе.

Заключэнне

Такім чынам, вы пазнаёміліся з рознымі відамі графічных відарысаў (гл. форзац ІІ). Кожны відарыс знаходзіць сваё месца ў той ці іншай сферы дзейнасці чалавека.

Аксанаметрыя, перспектыва, чарцёж у праекцыях з лікавымі адзнакамі — відарысы, атрыманыя праецыраваннем прадмета на адну плоскасць праекцый. Чарцёж у сістэме прамавугольных праекцый утвараецца пры праецыраванні прадмета як на адну, так і на дзве і больш узаемна перпендыкулярныя плоскасці праекцый.

Для адлюстравання складаных дэталей на чарцяжах пры неабходнасці можна выкарыстоўваць да шасці асноўных плоскасцей праекцый.

Чарцёж мае цэлы шэраг умоўнасцей, спрашчэнняў, абазначэнняў і інш. Некаторыя з іх мы разгледзелі. Асобныя пры неабходнасці можна знайсці ў адпаведных стандартах.

Тэарэтычныя асновы спосабаў пабудовы чарцяжоў вывучаюць у начартальнай геаметрыі. У ёй разглядаюцца два асноўныя віды праекцыйных задач: 1) задачы, звязаныя з узаемным размяшчэннем пунктаў, прамых, плоскіх і прасторавых фігур. Гэта — пазіцыйныя задачы. Такімі з'яўляюцца разгледжаныя намі задачы на пабудову на чарцяжы ліній зрэзу, выразаў і інш.; 2) задачы, звязаныя з вымярэннем па чарцяжы велічынь адрэзкаў, вуглоў, адлегласцей, вызначэннем памераў фігур і г. д. (напрыклад, задачы на пабудову разгортак і інш.). Гэта метрычныя задачы.

Заключэнне 167

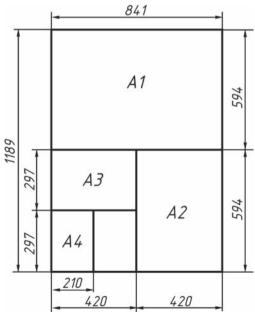
У тэхнічнай графіцы чарцяжы займаюць выключнае месца, што звязана з іх роляй у вытворчасці. Калі ў асобных галінах ведаў чарцёж выконвае толькі дапаможную, ілюстрацыйную, ролю, то ў тэхнічнай графіцы ён з'яўляецца асноўным сродкам вывучэння прадметаў навакольнага свету і мае самастойнае значэнне як канструктарскі дакумент.

Чарцёж, эскіз, тэхнічны рысунак, іншыя графічныя дакументы з'яўляюцца той сукупнасцю выяўленчых і знакавых сістэм, якія і складаюць аснову графічнай мовы. Гэта мова (як вы ўпэўніліся і ў працэсе вывучэння чарчэння) неабходна для выражэння тэхнічных ідэй, захавання і перадачы інфармацыі, зносін людзей многіх прафесій і інш.

Закончыўшы вывучэнне курса чарчэння, вы не павінны развітвацца з графічнымі відарысамі. Зараз яны змогуць быць вашымі нязменнымі спадарожнікамі і надзейнымі памочнікамі ў штодзённым практычным жыцці.

З а ў в а г а. Для паўтарэння вывучанага матэрыялу прачытайце ўсю інфармацыю, змешчаную ў Кароткім тэрміналагічным слоўніку (с. 200—208).

Дадаткі

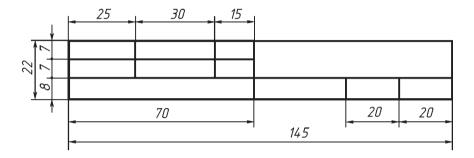

Дадатак 1

ФАРМАТЫ ДАСТ 2.301-68

Памеры старон фармату, мм
841×1189
$594{\times}841$
$420{\times}594$
$297{\times}420$
$210{\times}297$

Дадатак 2

УТВАРЭННЕ ФАРМАТАЎ



Правообладатель Национальный институт образования

Дадатак 3 169

Дадатак 3

ПАМЕРЫ АСНОЎНАГА НАДПІСУ ЧАРЦЯЖА

170 Дадаткі

Дадатак 4

ШРЫФТ ЧАРЦЁЖНЫ ЛАСТ 2.304-81

Дадатак 5

СУАДНОСІНЫ ПАМЕРАЎ ЛІТАР І ЛІЧБАЎ РУСКАГА АЛФАВІТА ДАСТ 2.304-81

Параметры шрыфту	Суадносіны памераў
Вялікія літары і лічбы	
Вышыня літар і лічбаў	h
Таўшчыня ліній	d = 0,1
Шырыня літар (g) і лічбаў	
(акрамя дадзеных ніжэй)	6d
Шырыня літар А, Д, Ж, М, Ф, Х,	
Ц, Ш, Щ, Ъ, Ы, Ю	78d
Шырыня літар Г, З, С	5d
Шырыня лічбы 1	3d
Малыя літары	
Вышыня літар	7/10h
Таўшчыня ліній	d
Шырыня літар	
(акрамя дадзеных ніжэй)	5d
Шырыня літар а, м, ц, ъ	6d
Шырыня літар ж, т, ф, ш, щ, ы, ю	7d
Шырыня літар з, с	4d
Адлегласць паміж літарамі і ліч-	
бамі ў словах	2d
Адлегласць паміж словамі і ліч-	
бамі	6d
Адлегласць паміж ніжнімі ліней-	
камі радкоў	17d

172 Дадаткі

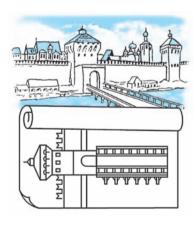
Дадатак 6

АДНОСНЫЯ ПАМЕРЫ КРАПЕЖНЫХ ДЭТАЛЕЙ У ЗАЛЕЖНАСЦІ АД ВОНКАВАГА ДЫЯМЕТРА РАЗЬБЫ

Назва	Суадносіны памераў
Памер вонкавага дыяметра разьбы	d
Дыяметр акружнасці, апісанай вакол шасцівугольніка для балта, гайкі	2d
Вышыня плешкі балта	0,7d
Вышыня гайкі	0,8d
Даўжыня наразной часткі балта	≈2 <i>d</i>
Дыяметр адтуліны пад болт	1,1 <i>d</i>
Дыяметр шайбы	2,2d
Вышыня шайбы	$0,\!15d$

Дадатак 7

З ГІСТОРЫІ РАЗВІЦЦЯ ГРАФІЧНЫХ ВІДАРЫСАЎ


Неабходнасць з'яўлення чарцяжоў у практыцы

З'яўленне відарысаў было звязана з працоўнай дзейнасцю чалавека — будаўніцтвам умацаванняў, гарадскіх пабудоў і інш. Спачатку відарысы рабілі непасрэдна на зямлі ў тым месцы, дзе неабходна было весці будаўніцтва. Затым іх пачалі рабіць на камені, гліняных плітах і інш.

Спачатку розніцы паміж чарцяжом і відарысам практычна не было. Відарысы выконваліся ад рукі, на вока. Паглядзіце на рысунак 173. На ім вы бачыце чарцёж млына на рацэ Сем. Такі чарцёж не змяшчаў памераў, і меркаваць па ім аб адлюстраваных прадметах можна толь-

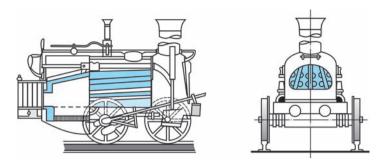
Рыс. 173. Відарыс млына на рацэ (XVII ст.)

Рыс. 174. Чарцёж моста і вартаўнічай вежы (XVII ст.)

кі прыблізна. Гэты чарцёж мае патрэбу ў слоўных тлумачэннях, таму на ім зроблены розныя надпісы.

Паступова чарцяжы ўдасканальваліся. На рысунку 174 змешчаны чарцёж моста (як мы ўбачылі б яго зверху) і вартаўнічай вежы (як мы ўбачылі б яе спераду), які адносіцца да XVII ст. Звярніце ўвагу: ён ужо больш дакладна перадае абрысы адлюстраваных збудаванняў і выкананы з дапамогай чарцёжных інструментаў.

Значнага росквіту дасягнула графіка ў Расіі ў часы праўлення Пятра І. Да нас дайшлі шматлікія караблебудаўнічыя чарцяжы таго часу. Некаторыя з іх выкананы Пятром І па правілах праецыравання.


Чарцяжом карысталіся многія выдатныя вынаходнікі і інжынеры. Вядомы чарцяжы ўніверсальнай паравой машыны рускага вынаходніка XVIII ст. І. Палзунова.

Таленавіты рускі механік, канструктар і вынаходнік XVII ст. І. П. Кулібін толькі для стварэння аднаго са сваіх шэдэўраў — гадзінніка ў форме курынага яйка — выканаў некалькі дзясяткаў чарцяжоў. Іншым прыкладам яго дзейнасці з'яўляюцца чарцяжы моста праз раку Няву. І Палзуноў, і Кулібін задоўга да з'яўлення «Начартальнай геаметрыі» Г. Монжа карысталіся праецыраваннем на дзве ўзаемна перпендыкулярныя плоскасці праекцый.

Вельмі цікавы чарцёж паравоза (рыс. 175) бацькі і сына Чарапанавых. Чарцёж змяшчае дзве праекцыі.

Гэтыя, як і мноства іншых, чарцяжы ілюструюць не толькі высокі ўзровень развіцця ін-

Дадатак 7 175

Рыс. 175. Чарцёж паравоза Чарапанавых (XIX ст.)

жынернай графікі таго часу, але і не менш высокі ўзровень тэхнічнай думкі.

На чарцяжах канца XVIII ст. з'яўляецца маштаб. З гэтага часу і да 30-х гг. XX ст. большасць чарцяжоў расфарбоўвалася. Чарцяжы сталі змяшчаць больш інфармацыі, але на іх выкананне затрачвалася шмат часу. Таму іх сталі паступова спрашчаць, выкарыстоўваючы розныя ўмоўнасці, надпісы і інш.

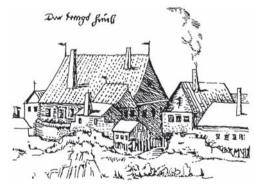
Графічныя відарысы на тэрыторыі Беларусі

Беларуская зямля вядома мноствам выдатных помнікаў гісторыі, культуры, горадабудаўніцтва, архітэктуры і інш. На жаль, шматлікія войны, якія палалі на тэрыторыі Беларусі, знішчылі як многія пабудовы, так і графічныя відарысы, якія выкарыстоўваліся для іх узвядзення. І ўсё ж рысункі і чарцяжы, што захаваліся з XVI—XVII стст., сведчаць аб высокім узроўні іх графічнага выканання.

Выключную гістарычную каштоўнасць уяўляюць гравюры славутага палачаніна Францыска Правообладатель Национальный институт образования

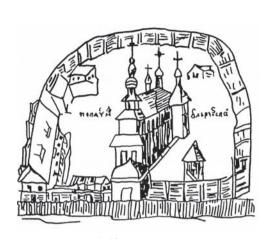
176 Дадаткі

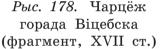
Скарыны, якімі былі праілюстраваны надрукаваныя ім у XVI ст. кнігі. На рысунку 176 паказаны фрагмент (частка) яго гравюры.


Разглядаючы гравюры, на якіх адлюстраваны гарады Гродна (рыс. 177), Нясвіж, Брэст і інш., можна выявіць шмат цікавых прыкладаў выканання відарысаў будынкаў.

У 1664 г. быў выкананы «Чарцёж горада Віцебска», які ўяўляе сабой план горада другой паловы XVII ст. На чарцяжы паказаны Верхні, Ніжні і Узгорскі замкі і манастыры з іх унутранай планіроўкай (рыс. 178). На тэрыторыі замкаў паказаны жылыя пабудовы, цэрквы і іншыя будынкі (рыс. 179). Гэтыя відарысы па пабудове вельмі блізкія да аксанаметрычных праекцый. Поўнае апісанне аб'ектаў, адлюстраваных на «Чарцяжы горада Віцебска», дадзена ў так званых каштарысных кнігах.

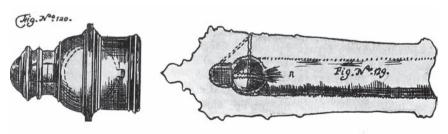
Планы гарадоў Мінска, Магілёва, Барысава, Оршы, Быхава, Полацка і інш., выкананыя ў XVII—XVIII стст., таксама сведчаць аб высокім графічным майстэрстве іх выканаўцаў.



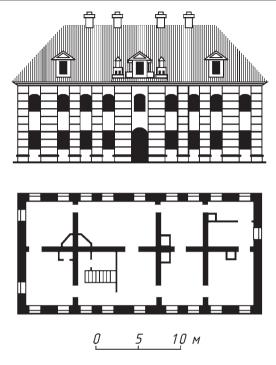

Рыс. 176. Гравюра Ф. Скарыны (фрагмент, XVI ст.)

 $Pыс.\ 177.\$ Гравюра горада Гродна (XVI ст.)

Дадатак 7 177



Рыс. 179. Відарыс царквы на чарцяжы Віцебска (XVII ст.)


У кнізе «Вялікае мастацтва артылерыі» беларускага вучонага XVII ст., вынаходніка шматступеньчатай ракеты Казіміра Семяновіча змешчаны відарысы парахавых ракет і розных прыстасаванняў да гармат (рыс. 180). Гэтыя відарысы па пабудове блізкія да сучасных тэхнічных рысункаў або да чарцяжоў у прамавугольных праекцыях.

Да нашых дзён захаваўся шэраг архітэктурнабудаўнічых чарцяжоў шматлікіх пабудоў, узве-

Рыс. 180. Відарыє прыстасаванняў да гармат (XVII ст.)
Правообладатель Национальный институт образования

178 Дадаткі

Рыс. 181. Чарцёж будынка горада Слоніма (XVIII ст.)

дзеных у XVII—XVIII стст. у Гомелі і іншых гарадах. У іх шырока выкарыстоўваліся праекцыйныя спосабы пабудовы відарысаў. Напрыклад, на рысунку 181 змешчаны фасад і планы аднаго з дамоў горада Слоніма (XVIII ст.). Гэты чарцёж, як і іншыя графічныя відарысы пабудоў, некаторых прадметаў быту, працы, што дайшлі на нас, з'яўляецца яскравым прыкладам спадчыны графічнага мастацтва беларускага народа.

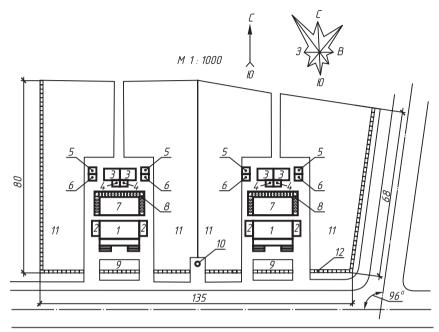
Ладатак 8

АРХІТЭКТУРНА-БУДАЎНІЧЫЯ ЧАРЦЯЖЫ

Асаблівасці архітэктурна-будаўнічых чарияжоў

Віды будаўнічых чарцяжоў. Узвядзенне будынкаў і збудаванняў ажыццяўляецца па дакументах, якія змяшчаюць чарцяжы, каштарыснафінансавыя разлікі і інш. Будаўнічыя чарцяжы вызначаюць выгляд і канструкцыю аб'екта. Яны вельмі разнастайныя як па змесце, так і па афармленні.

Распрацоўка чарцяжоў вядзецца ў два этапы. Спачатку вызначаецца праектнае заданне без падрабязнай прапрацоўкі канструкцый асобных дэталей. Затым выконваюцца рабочыя чарцяжы, неабходныя для стварэння будаўнічых канструкцый і іх мантажу.


У залежнасці ад зместу будаўнічыя чарцяжы падзяляюць на:

архітэктурна-будаўнічыя — чарцяжы жылых дамоў, заводскіх карпусоў, школ, іншых грамадскіх і вытворчых будынкаў;

інжынерна-будаўнічыя — чарцяжы дарог, мастоў, тунэляў;

тапаграфічныя — чарцяжы ўчасткаў зямной паверхні з відарысам рэльефу мясцовасці і размешчаных на ёй аб'ектаў і збудаванняў.

Планы, фасады і разрэзы будынкаў. У склад архітэктурна-будаўнічых чарцяжоў уваходзіць перш за ўсё генеральны план (рыс. 182). Ён змяшчае даныя аб размяшчэнні праектуемага будынка на адведзеным зямельным участку, звесткі аб яго

Эксплікацыя

1 – Жылы дом

2 - Гараж

3 - Хлеў 4 - Павець

5 - Памыйная яма

6 - Тиалет

7 – Дзіцячая пляцоўка

8-«Жывая» агароджа

9 – Палісаднік

10 - Калодзеж

11 - Агарод (сад)

12 – Плот

Рыс. 182. Генеральны план

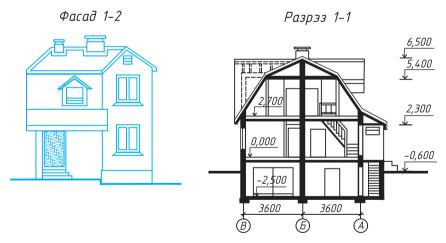
прымыканні да суседніх будынкаў, аб пад'язных дарогах, зялёных насаджэннях, вадаёмах і інш. На генеральным плане стрэлкамі з літарамі Пн. (поўнач) і Пд. (поўдзень) паказваюць напрамкі старон свету, напрамак пануючых вятроў (дыяграма, якая называецца «ружа вятроў»), маштаб відарысаў (лінейны) і інш. Збудаванні на генеральным плане паказваюць у выглядзе контураў. Тут жа размяшчаюць эксплікацыю — тэкст у

Дадатак 8 181

выглядзе табліцы, які тлумачыць значэнне прынятых на плане ўмоўных абазначэнняў.

Рабочыя архітэктурна-будаўнічыя чарцяжы змяшчаюць планы, фасады, разрэзы будынкаў, планы падмуркаў, перакрыццяў і інш. Так званыя дэталіровачныя чарцяжы змяшчаюць відарысы асобных частак і дэталей будынкаў: аконныя і дзвярныя блокі, лесвіцы і інш.

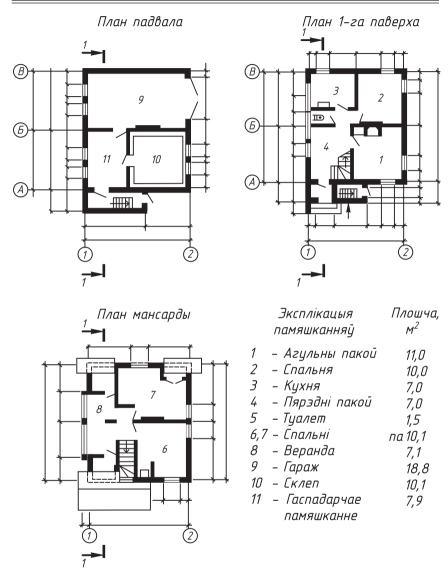
Відарысы на будаўнічых чарцяжах атрымліваюць шляхам прамавугольнага праецыравання на франтальную, гарызантальную і профільную плоскасці праекцый з прымяненнем разрэзаў. Гэтыя відарысы на будаўнічых чарцяжах маюць свае назвы.


Разгледзім асноўныя відарысы, якія выкарыстоўваюцца на архітэктурна-будаўнічых чарцяжах. Возьмем для прыкладу праект 4-пакаёвага мансардавага садовага доміка са сценамі з цэглы. Праект змяшчае перспектыву будынка (рыс. 183), фасад, план паверха, разрэз, іншыя відарысы і эксплікацыю, дзе змешчаны спіс усіх наяўных памяшканняў будынка з указаннем іх плошчы (рыс. 184, 185).

Ф а с а д. Фасад уяўляе сабой адлюстраванне вонкавых бакоў будынка. На фасадах паказваюць размяшчэнне вокнаў і дзвярэй, архітэктурных дэталей будынка, балконаў і інш. Фасады даюць звесткі аб агульных памерах будынка і прапорцыях яго асобных частак. Фасадаў, як правіла, выконваюць некалькі: галоўны, дваравы, бакавыя.

Р а з р э з. Разрэз служыць для выяўлення канструкцыі будынка і вышыні паверхаў. Атрымліваюць яго з дапамогай вертыкальных сякучых

Рыс. 183. Відарыс дома ў перспектыве



Рыс. 184. Чарцяжы фасада і разрэзу будынка

плоскасцей, якія праходзяць, як правіла, па аконных і дзвярных праёмах (рыс. 184, разрэз 1-1).

Над фасадамі і планамі часам робяць надпісы такога тыпу: «Фасад 1-2», «План 1-га паверха» і г. д.

Дадатак 8 183

Рыс. 185. План будынка

Планам называюць разрэз будынка гарызантальнай плоскасцю на ўзроўні крыху вышэй за падаконнікі. Планы выконваюць для кожнага паверха. На рысунку 185 змешчаны так-

сама планы падвала і мансарды — жылога памяшкання на гарышчы пад скатам даху.

На планах паказваюць узаемнае размяшчэнне памяшканняў, лесвічных клетак, вокнаў і дзвярэй, наносяць відарысы санітарна-тэхнічнага абсталявання, указваюць шырыню і даўжыню будынка, адлегласць паміж восямі сцен і калон, памеры праёмаў і прасценкаў, таўшчыню сцен і перагародак і інш. Акрамя таго, паказваюць плошчу (у квадратных метрах) усіх памяшканняў. Звычайна яе запісваюць арабскай лічбай, падкрэсленай знізу суцэльнай лініяй (гл. рыс. 191). На рысунку 185 плошча памяшканняў паказана не на планах будынка, а ў эксплікацыі.

Сячэнні сцен, выкананыя з матэрыялу, які з'яўляецца для будынка асноўным, не штрыхуюць (гл. рыс. 192) або вылучаюць заліўкай (гл. рыс. 185, 191). Асобныя ўчасткі з іншага матэрыялу вылучаюць штрыхоўкай.

Выгляд будынка зверху будзе з'яўляцца планам даху гэтага будынка.

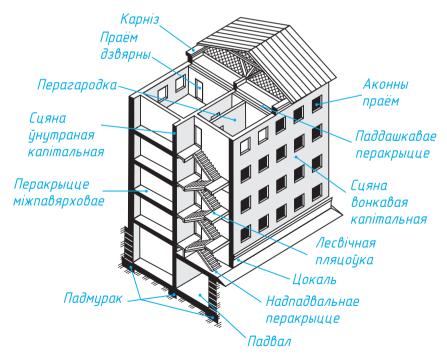
Маштабы і памеры на будаўнічых чарцяжах. На будаўнічых чарцяжах прымяняюць наступныя маштабы памяншэння: 1:100, 1:200, 1:400 і г. д. Для невялікіх будынкаў і фасадаў прымяняюць звычайна маштаб 1:50. Паколькі маштаб розных відарысаў можа быць розным, яго звычайна паказваюць каля кожнага з іх.

Размерныя лініі на будаўнічых чарцяжах абмяжоўваюць не стрэлкамі, а кароткімі рыскамі пад вуглом 45° да размернай лініі (рыс. 185). Акрамя адзнак вышыні, памеры на будаўнічых чарцяжах паказваюць у міліметрах, часам на асобных чарцяжах — у сантыметрах.

Дадатак 8 185

Памеры на планах будынкаў наносяць звычайна са знешняга боку. У першым радзе ў выглядзе замкнутага ланцужка ўказваюць памеры аконных і дзвярных праёмаў, прасценкаў. У другім радзе наносяць памеры паміж кожнай парай сумежных восей і таксама ў выглядзе замкнутага ланцужка. У трэцім радзе даюць агульны памер паміж крайнімі восямі. Акрамя таго, наносяць унутраныя памеры памяшканняў: даўжыню, шырыню і інш.

На рысунку 185 нанесены вынасныя і размерныя лініі, але размерныя лікі не паказаны. (Іх цяжка напісаць на такім малым чарцяжы.) Літарамі і лічбамі ў кружках абазначаны падоўжныя — A, B, B і папярочныя — 1, 2 восі сцен будынка.

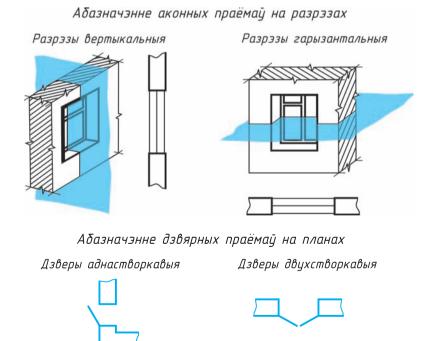

На фасадзе і разрэзе будынка наносяць абазначэнні адзнак вышыні (6,500; 5,400 і г. д. на рыс. 184).

Адзнакай называюць лік, які паказвае вышьню гарызантальнай пляцоўкі над нулявой плоскасцю. За нулявую адзнаку прымаюць узровень падлогі першага паверха. Адзнакі прыводзяцца ў метрах, запісваюцца на лініях-паліцах. Яны паказваюць, на колькі вышэй або ніжэй (са знакам «мінус») за нулявую адзнаку знаходзіцца адзначаны ўзровень. Нулявую адзнаку запісваюць лікам 0,000. Напрыклад, на рысунку 184 адзнака 2,700 указвае на тое, што паверхня падлогі мансарды знаходзіцца на 2,7 м вышэй за ўзровень падлогі першага паверха. Адзнака -2,500 азначае, што ўзровень падлогі першага паверхні падлогі ў падвале ніжэйшы за ўзровень падлогі першага паверха на 2,5 м.

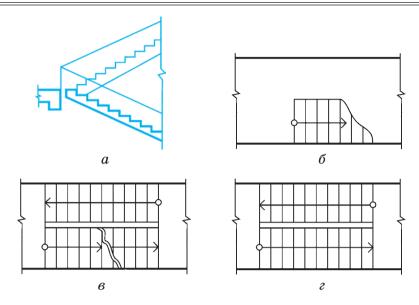
Умоўныя відарысы і абазначэнні на архітэктурна-будаўнічых чарцяжах

Паказ элементаў будынкаў. Любы будынак складаецца з канструкцыйных элементаў, якія маюць сваю назву, прызначэнне, форму, памеры і іншыя даныя. На чарцяжах яны паказваюцца графічна ўмоўна. Але перш чым разгледзець гэтыя ўмоўныя абазначэнні, разгледзьце рысунак 186, дзе паказаны некаторыя часткі і элементы будынка. Усвядоміўшы іх функцыі, вам лягчэй будзе чытаць відарысы гэтых элементаў будынка на чарцяжах.

А зараз прывядзём відарысы некаторых элементаў будынка.



Рыс. 186. Часткі і элементы будынка Правообладатель Национальный институт образования


Дадатак 8 187

Аконныя і дзвярныя праёмы. На рысунку 187 змешчаны ўмоўныя графічныя абазначэнні і наглядныя відарысы аконных, дзвярных праёмаў на разрэзах і планах будынкаў. Як бачыце, на разрэзах сцены паказваюць суцэльнымі асноўнымі лініямі, аконныя праёмы — суцэльнымі тонкімі лініямі. На планах на месцы дзвярных праёмаў ліній не праводзяць, але паказваюць палатно дзвярэй і напрамак, куды адчыняюцца дзверы. На вертыкальных разрэзах на месцы дзвярных праёмаў праводзяць тонкія лініі.

Абрыў сцен паказваюць тонкімі хвалістымі лініямі.

Рыс. 187. Умоўны відарыс аконных і дзвярных праёмаў будынкаў

Рыс. 188. Умоўны відарыс лесвіц

Лесвічны я клеткі. На рысунку 188 прыведзены ўмоўны відарыс лесвіцы: лесвічны марш у сячэнні (рыс. 188, a), ніжні марш у плане (рыс. $188, \delta$), прамежкавы марш (рыс. $188, \varepsilon$), верхні марш (рыс. $188, \varepsilon$).

Лінія са стрэлкай на канцы паказвае напрамак пад'ёму лесвічнага марша. Пачынаецца яна кружком, размешчаным на відарысе пляцоўкі паверха.

Абазначэнні на архітэктурна-будаўнічых чарцяжах. Пры выкананні архітэктурна-будаўнічых чарцяжоў выкарыстоўваюць графічныя ўмоўныя абазначэнні многіх іншых элементаў будынкаў, дымавых і вентыляцыйных каналаў, санітарнатэхнічнага, бытавога і іншага абсталявання, мэблі і інш. Дадатак 8 189

	Дымаходы і вентыляцыйныя		Металы і цвёрдыя сплавы
	каналы ў плане Печы ацяпляльныя: на цвёрдым паліве, на газе		Неметалічныя матэрыялы, у тым ліку валакністыя, маналітныя і плітныя
0 0	Пліта ў плане		Драўніна
	Ракавіна Умывальнік		Камень прыродны
	Мыйка чыгунная		Кераміка і сілікатныя
0	Уніта з		матэрыялы для муроўкі
0	Ванна		Бетон
	Шафа		Шкло і іншыя
	Канапа-ложак	of the special	празрыстыя
	Сталы: прамавугольныя,		матэрыялы
	круглыя		Вадкасці
	Крэсла		Грунт
	Канапа		натуральны
0	Крэсла мяккае	11 11 11	Засыпка з любога матэрыялу

рыс. 100. Умоўны Рыс. 190. Умоўнае відарыс розных прыбораў ябагиять

матэрыялаў

Усе ўмоўныя графічныя абазначэнні ўяўляюць сабой спрошчаныя відарысы знешняга выгляду абсталявання. Разгледзім некаторыя прыклады. Правообладатель Национальный институт образования

Ацяпляльныя прыборы, санітарна - тэхнічнае абсталяванне. Рысунак 189 змяшчае ўмоўныя абазначэнні і адпаведныя тлумачальныя надпісы ацяпляльных прыбораў, санітарна-тэхнічнага абсталявання.

Усе ўмоўныя відарысы абводзяць тонкімі лініямі. Выконваюць іх у прынятым для гэтага чарцяжа маштабе.

Абазначэнне матэрыялаў на сячэннях. На рысунку 190 паказаны прынятыя стандартам некаторыя графічныя абазначэнні матэрыялаў на сячэннях (у дадатак датых, якія змешчаны на рыс. 123).

У будаўнічых чарцяжах дапускаецца на сячэннях невялікай плошчы любы матэрыял абазначаць як метал або наогул не прымяняць абазначэнне, прывёўшы пры гэтым тлумачальны надпіс на полі чарцяжа.

Чарцяжы камунікацый. Чытанне архітэктурна-будаўнічых чарцяжоў

Чарцяжы камунікацый (ад лац. communicatio — сувязь, перадача інфармацыі) уваходзяць у састаў дакументацыі на будаўніцтва кожнага аб'екта. Яны змяшчаюць чарцяжы і схемы розных санітарна-тэхнічных прыбораў і электрычнага абсталявання.

Чарцяжы і схемы камунікацый выконваюць на генеральных планах, вертыкальных разрэзах, планах паверхаў і інш. Яны могуць існаваць і як самастойныя дакументы.

На санітарна-тэхнічныя работы выконваюць чарцяжы і схемы ацяплення, вентыляцыі, водаправода, каналізацыі, газазабеспячэння і інш.; на электратэхнічныя работы — схемы электраасвятлення, радыё- і тэлефонных сетак, размяшчэння электраабсталявання і інш. На схемах такіх камунікацый выкарыстоўваюць прынятыя стандартам графічныя абазначэнні дэталей трубаправодаў, санітарна-тэхнічных прыбораў, апаратуры, цеплатэхнічных сродкаў і г. д.

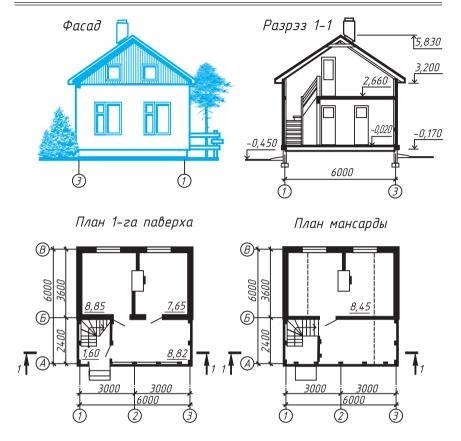
Унутраныя (г. зн. тыя, што знаходзяцца ў будынку) сеткі водаправода, каналізацыі і інш. выконваюць на асобных чарцяжах. Часта схематычны відарыс сетак суправаджаюць аксанаметрычнай праекцыяй.

Па ўмоўных графічных абазначэннях вызначаюць назвы ўсіх паказаных прыбораў, іх прызначэнне і размяшчэнне.

Схема, як і зборачны чарцёж, мае відарыс састаўных частак таго або іншага вырабу і сувязей, якія існуюць паміж імі. Але на схеме дэталі, якія ўваходзяць у выраб, паказваюць абстрактнымі графічнымі ўмоўнымі знакамі. Схема — гэта таксама графічны канструктарскі дакумент. Яго выконваюць на лістах стандартнага фармату з вычэрчваннем рамкі і асноўнага надпісу, але без захавання маштабу.

Схемы дазваляюць вызначыць прынцыпы работы вырабу, яго наладку, кантроль за працай і інш. Схемы ўключаюць у тэхнічныя апісанні і ў інструкцыі па эксплуатацыі прыбораў і механізмаў, шырока выкарыстоўваюць для тлумачэння будовы і прынцыпу дзеяння розных бытавых прыбораў.

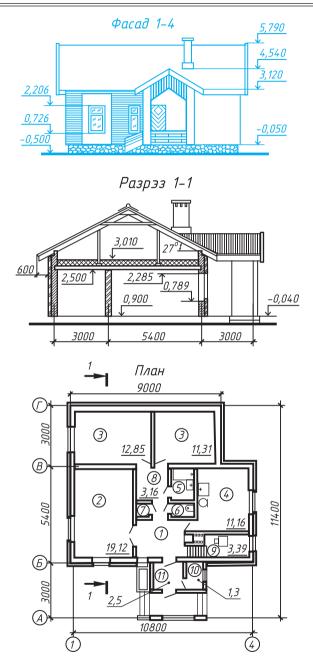
У залежнасці ад элементаў, што ўваходзяць у склад вырабаў, якія паказваюць на схемах, схемы падзяляюць на кінематычныя, электрычныя, гідраўлічныя і інш.


Чытанне чарцяжоў. Парадак і паслядоўнасць чытання тых або іншых будаўнічых чарцяжоў залежыць ад тыпу чарцяжа. Чытанне генеральнага плана пачынаюць з вызначэння яго маштабу, межаў участка, арыентацыі яго адносна старон свету. Па эксплікацыі і чарцяжы выяўляюць наяўнасць паказаных будынкаў, пад'ездаў і інш.

Чарцяжы будынкаў і збудаванняў чытаюць у наступнай паслядоўнасці.

- 1. Па асноўным надпісе вызначаюць назву будынка або збудавання, яго прызначэнне.
- 2. Па чарцяжах вызначаюць колькасць відарысаў (фасады, планы, разрэзы), іх маштаб, агульныя канструкцыйныя і архітэктурныя асаблівасці будынка.
- 3. Па фасадах і разрэзах вызначаюць агульную вышыню будынка, канструкцыю даху, падмурка, вышыню паверхаў, дзвярэй, вокнаў, таўшчыню сцен, перакрыццяў, іншую інфармацыю аб узаемным размяшчэнні і канструкцыі частак будынка.
- 4. Па плане высвятляюць размяшчэнне дзвярэй, вокнаў, санітарна-тэхнічнага і іншага абсталявання ў жылых і нежылых памяшканнях, іх плошчу і інш.

Разгледзім для прыкладу чарцёж летняга дачнага доміка з цэглы з мансардай (рыс. 191).


Праект змяшчае фасад будынка, план першага паверха, план мансарды, адзін з разрэзаў (1-1).

Рыс. 191. Чарцёж летняга доміка

Вывучыўшы чарцяжы, можна зрабіць выснову, што ўваход у дом ажыццяўляецца знадворку (гл. відарыс ганка на плане 1-га паверха). У мансарду можна трапіць па вінтавой лесвіцы з паваротам на 90°.

На першым паверсе — два ізаляваныя жылыя пакоі плошчай 8,85 і 7,65 м 2 . Уваход у іх — з веранды, плошча якой роўная 8,82 м 2 . На мансардзе таксама ёсць жылы пакой. Яго плошча — 8,45 м 2 .

Рыс. 192. Праект жылога дома Правообладатель Национальный институт образования

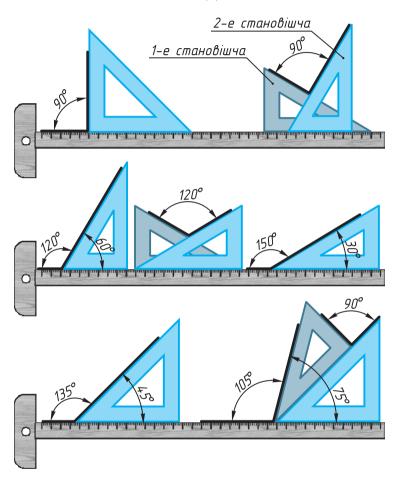
Ацяпленне пячное. Падмурак зроблены са стужачных маналітных блокаў, перакрыцце— з драўніны, дах— з мяккай чарапіцы.

Разгледзьце самі па фасадзе, планах і разрэзах размяшчэнне дзвярэй, вокнаў, вызначце габарытныя памеры будынка, яго вышыню, вышыню падлогі мансарды і інш. Звярніце ўвагу, што на рысунку паказаны той фасад дома, які дае яго выгляд ззаду.

Карыстаючыся разгледжанай раней паслядоўнасцю, можна лёгка прачытаць архітэктурна-будаўнічы чарцёж (напрыклад, рыс. 192), на якім змешчаны праект аднапавярховага аднакватэрнага трохпакаёвага жылога дома.

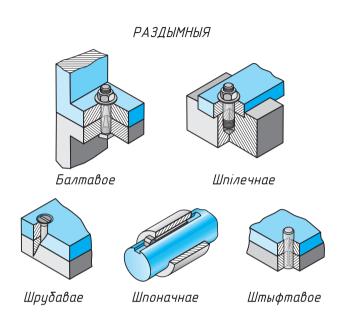
На плане будынка паказаны: 1 — пярэдні пакой, 2 — агульны пакой, 3 — спальні, 4 — кухня, 5 — ванная, 6 — туалет, 7 — кладоўка, 8 — калідор, 9 — сушыльная шафа, 10 — топачная, 11 — халодная кладоўка; паказаны таксама плошчы кожнага памяшкання.

Дадатак 9


ЛІТАРЫ ЛАЦІНСКАГА АЛФАВІТА

ABCDEFEHIJKLMN OPQRSTIJVWXYZ abcdefghijklmnop qrstuvwxyz

Дадатак 10 197


Дадатак 10

прыёмы пабудовы вуглоў

Дадатак 11

злучэнні дэталей

Літаратура для вучняў

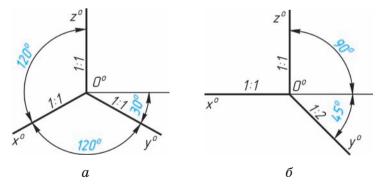
Виноградов, В. Н. Сборник задач и упражнений по черчению (технической графике): пособие для учащихся / В. Н. Виноградов, Е. А. Василенко, Л. Н. Коваленко. — Минск: Народная асвета, 2000. — 128 с.

Bиноградов, B. H. Словарь-справочник по черчению : книга для учащихся / <math>B. H. Виноградов [и др.]. — Москва : Просвещение, 1999. - 160 с.

Коваленко, Л. Н. Черчение с увлечением / Л. Н. Коваленко. — Минск : СЭР-ВИТ, 2004. — 240 с.

Фролов, С. А. Начертательная геометрия : Что это такое? / С. А. Фролов, М. В. Покровская. — Минск : Вышэйшая школа, 1986. - 208 с.

 ${\it Шабека},\ {\it Л.}\ {\it C.}$ Занимательное графическое моделирование на компьютере, 9 кл. : пособие для учащихся / ${\it Л.}\ {\it C.}\ {\it Шабека},\ {\it IO.}\ {\it II.}\ {\it Беженарь.}\ -\ {\it Минск}$: СЭР-ВИТ, $2010.\ -\ 208\ {\it c.}$


Шабека, Л. С. Инженерная графика: учебно-методический комплекс: в 3 ч. / Л. С. Шабека [и др.]; под ред. Л. С. Шабека. — Минск: БГАТУ, 2009. — Ч. 1. — Основы проекционного комплексного чертежа. — 168 с.

Кароткі тэрміналагічны слоўнік

Aкружнасць — плоская крывая лінія, адлегласць усіх пунктаў якой да зададзенага пункта — цэнтра — роўная дадзенаму адрэзку — $pa\partial \omega y cy$ акружнасці.

Адрэзак, які злучае два пункты акружнасці, называецца $xop\partial a\ddot{u}$. Хорда, якая праходзіць праз цэнтр, — гэта $\partial \omega$ акружнасці. Прамая, якая мае з акружнасцю толькі адзін агульны пункт, называецца ∂ атычнай да акружнасці.

Аксанаметрычныя праекцыі — праекцыі, атрыманыя шляхам паралельнага праецыравання прадмета разам з сістэмай прамавугольных каардынат на адвольна выбраную плоскасць. Пры размяшчэнні аксанаметрычных восей пад вуглом 120° адзін да аднаго і памерамі адрэзкаў па восях у маштабе 1:1 аксанаметрыю называюць ізаметрычнай (гл. рыс. 193, a). Калі памеры адрэзкаў бяруць аднолькавымі толькі па дзвюх восях, аксанаметрыю называюць дыметрычнай. Вуглы паміж восямі адной з іх паказаны на рысунку 193, 6. Такую дыяметрычную праекцыю называюць франтальнай.

Рыс. 193. Восі аксанаметрычных праекцый

 $ACK\mathcal{I}$ — адзіная сістэма канструктарскай дакументацыі, якая змяшчае шэраг стандартаў, якія ўстанаўлі-

ваюць правілы выканання, афармлення чарцяжоў і тэкставых матэрыялаў, парадак іх уліку, захавання і інш. для ўсіх галін прамысловасці, будаўніцтва, транспарту. АСКД — гэта дзяржаўныя стандарты, зацверджаныя адпаведнымі органамі.

Відарыс — форма інфармацыі аб прадметах і з'явах, якая ўспрымаецца зрокам (фатаграфія, чарцёж і інш.). Відарысы, якія складаюцца з ліній, пунктаў, штрыхоў і інш., называюць графічнымі. Відарыс на чарцяжы — відарыс, які выкарыстоўваецца для пабудовы чарцяжоў дэталей, зборачных адзінак і інш. Відарысы на чарцяжы падзяляюцца на выгляды, разрэзы і сячэнні.

Выгляд — адзін з відарысаў, які выкарыстоўваецца на чарцяжы для выяўлення геаметрычнай формы прадмета. Згодна са стандартам, выгляд — гэта відарыс звернутай да назіральніка бачнай часткі паверхні прадмета. На выглядах дапускаецца паказваць і нябачныя часткі паверхні з дапамогай штрыхавых ліній. Выгляды на чарцяжы выконваюць па спосабе прамавугольнага праецыравання. Існуюць асноўныя выгляды (іх шэсць), мясцовыя і дадатковыя. Колькасць выглядаў на чарцяжы павінна быць найменшай, але дастатковай для выяўлення геаметрычнай формы прадмета, які паказваецца.

Выраб — прадмет, які складаецца з адной або некалькіх дэталей, выкананы на прадпрыемстве, у майстэрні. Да вырабаў адносяць дэталі, зборачныя адзінкі, комплексы, камплекты.

Геаметрычныя фігуры і целы. Пад фігурай у матэматыцы разумеюць любую сукупнасць пунктаў. Усялякую складаную фігуру можна падзяліць на больш простыя.

Калі ўсе пункты фігуры ляжаць у адной плоскасці, фігуру называюць плоскай: трохвугольнік, квадрат і інш. Сукупнасць пунктаў, размешчаных у прасторы, утвараюць прасторавую фігуру: куб, цыліндр і інш. Фігуры ў прасторы называюць *целамі*.

Графік — графічны відарыс для нагляднага адлюстравання колькаснай залежнасці змянення адной велічыні ад іншай. Графік служыць для выяўлення гэтай залежнасці ў матэматыцы, фізіцы, біялогіі, медыцыне, вытворчасці і інш.

Дакументы канструктарскія — графічныя і тэкставыя дакументы, у якіх устанаўліваюцца будова вырабу, яго склад, даныя для эксплуатацыі і рамонту. Для дэталей асноўным канструктарскім дакументам з'яўляецца іх чарцёж, для зборачных адзінак — зборачны чарцёж і спецыфікацыя.

Дыяграма — відарыс, які наглядна адлюстроўвае суадносіны паміж рознымі велічынямі, кожная з якіх паказваецца, напрыклад, прамалінейным адрэзкам, якой-небудзь геаметрычнай фігурай (прамавугольнік, круг і інш.) пры выбранай адзінцы вымярэння. Па форме дыяграмы могуць быць стужачнымі, слупковымі, сектарнымі, фігурнымі і інш.

Дэталь — выраб, выкананы з аднаго матэрыялу без прымянення зборачных аперацый. Дэталі бываюць агульнага прызначэння (балты, зубчастыя колы і інш.) і спецыяльныя, якія сустракаюцца ў некаторых вырабах.

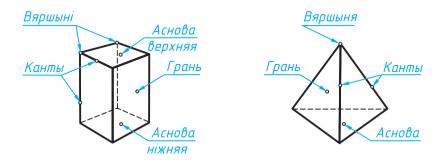
Інструменты чарцёжныя — прыстасаванні для выканання чарцяжоў, схем і іншых канструктарскіх дакументаў. Да чарцёжных інструментаў адносяць лінейкі, вугольнікі, цыркулі, лякалы, трафарэты, рэйсшыны і інш.

Рэйсшына — лінейка з галоўкай (нерухомай або паваротнай), якая служыць для правядзення паралельных ліній (рыс. 194). Галоўку рэйсшыны перасоўваюць уздоўж канта чарцёжнай дошкі.

Для выканання чарцяжоў у канструктарскіх бюро часам выкарыстоўваюць прыбор, які называецца *кульман* (рыс. 195). Ён замяняе рэйсшыну, вугольнік, транспарцір і інш.

Набор некаторых чарцёжных інструментаў у спецыяльным футляры называюць гатавальняй.

Рыс. 194. Чарцёжная дошка і рэйсшына

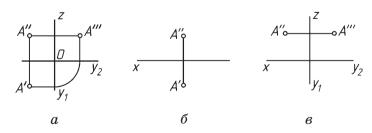

Рыс. 195. Чарцёжны прыбор «кульман»

Інфармацыя — любыя звесткі аб прадметах і з'явах навакольнага свету, аб іх уласцівасцях, стане. Інфармацыю ў графічнай форме — чарцяжы, рысункі, графікі, схемы і інш. — называюць графічнай.

Маштаб — адносіна памераў відарыса да сапраўдных памераў прадмета. Маштабы бываюць лікавыя (напрыклад, у чарчэнні), лінейныя (на геаграфічных картах), прапарцыянальныя (для геаметрычных пабудоў) і інш. Маштабы, якія прымяняюцца падчас выканання чарцяжа, устанаўлівае стандарт: памяншэння — 1:2, 1:5, 1:10 і інш., павелічэння — 2:1 і інш.

Мнагаграннік — гэта геаметрычнае цела, паверхня якога складаецца з плоскіх многавугольнікаў. Многавугольнікі ўтвараюць грані цела. Яны перасякаюцца па прамых — кантах. Вяршыні многавугольнікаў называюцца вяршынямі мнагагранніка.

Мнагаграннік з'яўляецца *прызмай*, калі дзве яго грані— роўныя многавугольнікі, якія знаходзяцца ў паралельных плоскасцях, а іншыя грані— паралелаграмы (рыс. 196). Паралельныя грані называюцца асновамі, адлегласць паміж імі ёсць вышыня прызмы. Прызма называецца прамой, калі яе бакавыя канты перпендыкулярныя да асноў.



Рыс. 196. Мнагаграннікі

 Π аралелепіпед уяўляе сабой прызму, у якой асновы — паралелаграмы. Kyb — гэта прамавугольны паралелепіпед, усе канты і ўсе грані якога роўныя паміж сабой.

Мнаграннік называецца *пірамідай*, калі адна з яго граней — многавугольнік (аснова), а іншыя грані — трохвугольнікі, якія маюць агульную вяршыню (гл. рыс. 196). Адлегласць ад асновы да вяршыні ёсць вышыня пірамілы.

Паказ пункта на чарцяжы. У прамавугольных праекцыях пункт паказваецца сваімі праекцыямі (рыс. 197, а). Для адназначнага вызначэння становішча пункта (яго каардынат) на чарцяжы дастаткова мець дзве яго праекцыі (рыс. 197, б і в). Пры гэтым франтальная і гарызантальная праекцыі пункта ляжаць на адной вертыкальнай лініі сувязі (рыс. 197, б), франтальная і профільная — на гарызантальнай (рыс. 197, в). Чарцёж, які

Рыс. 197. Паказ пункта ў прамавугольных праекцыях

складаецца з некалькіх праекцый, называюць *чарцяжом* у сістэме прамавугольных праекцый, або комплексным чарцяжом.

Праецыраванне — працэс атрымання відарыса прадмета на плоскасці (або якой-небудзь паверхні).

Адрозніваюць *цэнтральнае* і *паралельнае* праецыраванне. Паралельнае праецыраванне, у сваю чаргу, падзяляецца на прамавугольнае і косавугольнае. У тэхніцы выкарыстоўваюцца такія відарысы, якія атрыманы пры прамавугольным праецыраванні прадмета на адну ці некалькі плоскасцей праекцый.

Разгортка — плоская фігура, атрыманая сумяшчэннем усіх пунктаў якой-небудзь паверхні з плоскасцю без стварэння на паверхні складак і разрываў. Разгорнутыя паверхні — мнагаграннікі, некаторыя целы вярчэння. Крывыя паверхні не разгортваюцца, і іх разгорткі будуюць прыблізна.

У тэхніцы разгорткай называюць загатоўку або чарцёж плоскай загатоўкі, з якой атрымліваюць аб'ёмную форму дэталі або канструкцыі шляхам згібу.

Разрэз — адзін з відарысаў, які выкарыстоўваецца на чарцяжы для выяўлення ў першую чаргу ўнутранай геаметрычнай формы прадмета. Гэты відарыс атрымліваюць пры мысленным рассячэнні прадмета адной ці некалькімі плоскасцямі. Пры гэтым частку дэталі, размешчаную перад сякучай плоскасцю, мысленна выдаляюць і на чарцяжы паказваюць нябачныя часткі прадмета суцэльнымі тоўстымі лініямі як бачныя. На разрэзе паказваюць усё тое, што трапіла ў сякучую плоскасць (гэтыя часткі дэталі вылучаюць штрыхоўкай), і тое, што размешчана за сякучай плоскасцю. У залежнасці ад колькасці сякучых плоскасцей разрэзы падзяляюць на простыя (адна плоскасць) і складаныя (дзве і больш плоскасці); у залежнасці ад становішча сякучых плоскасцей — на франтальныя, гарызантальныя, профільныя і нахіленыя. У асобных выпадках разрэзы на чарцяжы абазначаюць па вызначаных стандартам правілах.

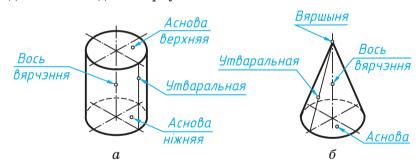
Рысунак тэхнічны — наглядны відарыс прадмета, выкананы па правілах аксанаметрычных праекцый. У адрозненне ад перспектыўнага рысунка, лініі, паралельныя на прадмеце ў натуры, застаюцца паралельнымі і на рысунку. Акружнасці і іншыя плоскія фігуры на тэхнічным рысунку паказваюцца са скажэннем. Выконваецца тэхнічны рысунак ад рукі з прыблізным захаваннем прапорцый прадмета. Для выяўлення аб'ёму прадмета выкарыстоўваюцца штрыхоўка і іншыя прыёмы.

Спалучэнне ліній — плаўны пераход адной лініі ў іншую. Пункт, агульны для спалучаемых ліній, называецца пунктам спалучэння, або пунктам пераходу. Для пабудовы спалучэнняў трэба знайсці цэнтр спалучэння і пункты спалучэнняў.

Спецыфікацыя — тэкставы канструктарскі дакумент, які вызначае склад зборачнай адзінкі. Яе выконваюць на асобных лістах фармату А4. На вучэбных чарцяжах спецыфікацыю размяшчаюць над асноўным надпісам. У спецыфікацыі ўказваюць парадкавыя нумары дэталей, якія ўваходзяць у дэталь, іх назвы, колькасць, марку матэрыялу і інш.

Схема — відарыс, на якім спрошчанымі сімваламі і знакамі паказваюць састаўныя часткі вырабу і іх сувязі. Схемы выконваюцца без захавання маштабу. Умоўныя абазначэнні для схем як графічных дакументаў вызначаюцца стандартамі. Схемы падзяляюць на кінематычныя, электрычныя, аптычныя і інш.

Сячэние — адзін з відарысаў на чарцяжы, атрыманы пры мысленным рассячэнні дэталі плоскасцю. Сячэнні выкарыстоўваюць, як правіла, для выяўлення папярочнай формы якой-небудзь часткі прадмета або яго асобных элементаў. У сячэнні на відарысе паказваюць толькі тое, што непасрэдна размешчана ў сякучай плоскасці. Фігуру сячэння вылучаюць штрыхоўкай. У залежнасці ад размяшчэння на чарцяжы сячэнні падзяляюць на вынесеныя і накладзеныя. Асобныя сячэнні на чарцяжы абазначаюць па вызначаных стандартам правілах.


Тэхналогія інфармацыйная — працэс апрацоўкі, перадачы і пераўтварэння графічнай інфармацыі ў адпаведнасці з адназначна вызначанымі правіламі. Для ажыццяўлення такіх тэхналогій створаны шматлікія аўтаматызаваныя сродкі, якія ўключаюць таксама прыборы атрымання і пабудовы графічных відарысаў з дапамогай камп'ютараў. Інфармацыйная тэхналогія выкарыстоўваецца пры выкананні і апрацоўцы рознай графічнай інфармацыі.

Целы вярчэння — геаметрычныя фігуры, атрыманыя шляхам вярчэння прамой або крывой лініі (утваральная) вакол якой-небудзь нерухомай лініі (вось), якая ляжыць у гэтай плоскасці. Гэта цыліндр, конус, сфера і іншыя целы.

Прамы кругавы цыліндр (рыс. 198, *a*) атрымліваецца ў выніку вярчэння прамавугольніка вакол адной з яго старон. Гэта цела абмежавана дзвюма плоскасцямі (асновы цыліндра) і бакавой цыліндрычнай паверхняй.

Прамы кругавы конус (рыс. 198, б) атрымліваецца пры вярчэнні прамавугольнага трохвугольніка вакол аднаго з катэтаў.

Шар атрымліваецца пры вярчэнні акружнасці вакол аднаго з яе дыяметраў.

Рыс. 198. Целы вярчэння

Чарцёж — графічны дакумент, выкананы па вызначаных стандартам правілах, які змяшчае відарыс вырабу і іншыя даныя, неабходныя для стварэння гэтага вырабу. Відарысы прадметаў на чарцяжах выконваюць па метадзе прамавугольнага праецыравання.

Чарцёж зборачны — чарцёж, які змяшчае відарысы вырабу (зборачнай адзінкі) у злучэнні. У спецыяльнай табліцы (спецыфікацыі) указваюць пералік усіх дэталей, якія ўваходзяць у гэты выраб. Спецыфікацыя вызначае састаў зборачнай адзінкі. Зборачны чарцёж павінен утрымліваць звесткі, неабходныя для зборкі (стварэння) вырабу і кантролю яго якасці.

Чытанне чарцяжа — мысленная аперацыя, якая дазваляе па відарысе ўявіць геаметрычную форму прадмета і, карыстаючыся данымі чарцяжа, вызначыць памеры прадмета цалкам і яго асобных частак, атрымаць іншую інфармацыю, неабходную для стварэння гэтага прадмета.

Элементы дэталі — часткі дэталі, якія маюць пэўнае прызначэнне (адтуліна, разьба і інш. — гл. форзац ІІ).

Эскіз — папярэдні няскончаны відарыс, накід дэталі або прадмета, выкананы па тых жа правілах, што і чарцёж, але ад рукі з прыблізным захаваннем прапорцый прадмета.

Прадметны паказальнік

А базначэнне	Γ еаметрыя начартальная
— дыяметра <i>22</i>	38, 166
— квадрата <i>24</i>	Графапабудавальнік 12
— радыуса <i>23</i>	Графіка
— разрэзу <i>124</i>	— камп'ютарная 12
— разьбы <i>145</i>	— мастацкая <i>5</i>
— сячэння 116	— тэхнічная <i>4</i>
А вал 65	
Адзінка зборачная 156	Дакументы канструктар-
Адзнака вышыні 185	скія <i>156, 202</i>
Акружнасць 200	Дзяленне
Аксанаметрыя 32	— адрэзкаў 46
Аловак 11	— акружнасцей <i>48</i>
Аналіз геаметрычнай фор-	Дыяметр разьбы 143
мы прадмета 75	Дэталіраванне <i>164</i>
APM 12	Дэталь 202
АСКД 15, 200	
Асноўны надпіс 17	Злучэнне
	— балтом 150
В ідарысы 201	— шпількай <i>152</i>
— графічныя <i>5</i>	— шпонкай <i>154</i>
— праекцыйныя 29	— шрубай <i>153</i>
— спрошчаныя 148	— штыфтам <i>155</i>
Boci	Злучэнні
— аксанаметрычныя 200	— нераздымныя 147
— праекцый 36	— раздымныя <i>147</i>
Вугольнік чарцёжны 11	Зрэз <i>102</i>
Выгляд 42, 201	
— асноўны <i>43</i>	f Iнфармацыя $f 5$
— галоўны 43	$-\!\!\!-$ візуальная 5
— дадатковы 140	— графічная 5 , 203
— мясцовы 44	
Выраб 201	К ульман <i>202</i>
і іравоооладатель Национ	альный институт образования

Лік размерны *22* Лінія *19*, *20*

— вынасная 22

— размерная 22

— сувязі *37* Лякала *202*

Маштаб 203 Метад Монжа 38 Мнагаграннікі 59, 203

Надпіс асноўны *17* Нанясенне памераў *21*

Памер

- вуглавы *21*
- габарытны 77
- лінейны 21

Памеры фасак 78

Папера чарцёжная 11

Пераўтварэнне відарысаў 94

Пераход плаўны *51* План *183*

- будынка 183
- генеральны 179

Плоскасць

- праекцый 27
- сякучая 115

Праекцыі з лікавымі адзнакамі 35

Праекцыя

- аксанаметрычная 32,200
- дыметрычная 200
- ізаметрычная 200
- косавугольная 31
- паралельная 30
- прамавугольная 31
- цэнтральная 30

Праецыраванне *27*, *30*, *31*, *32*, *205*

Прамая пастаянная чарцяжа 41

Прамень праецыруючы 27 Прыбор «кульман» 202 Пункт спалучэння 51

Радыус спалучэння *51* Разгортка *99*, *101*, *205* Разрэз *122*, *205*

- будынка 181
- гарызантальны 124
- мясцовы 127
- нахілены *124*
- просты 124
- профільны 124
- франтальны 124

Разьба *142*

- крапежная 142
- метрычная 142
- хадавая 142

Рамка чарцяжа 16

Рысунак тэхнічны 63, 206

Рэйсшына 202

Рэканструкцыя відарысаў *96*

CATIP 2

Спалучэнне *51*, *206* Спецыфікацыя *159*, *206* Спрашчэнні *137*

Схема 206

Сячэнне 116, 206

- вынесенае 117
- накладзенае 119

Транспарцір 50 Тэхналогія інфармацыйная 207

Фармат *15*, *168* Фасад будынка *181* Фігуры геаметрычныя *201*

Целы вярчэння 59, 207Цыркуль 12Цэнтр

- праецыравання 30
- спалучэння 51

Чарцёж 9, 207

- зборачны 157, 208
- у сістэме прамавугольных праекцый 33

Чытанне чарцяжа *85*, *208*

— архітэктурна-будаўнічага *192*

- дэталі 88
- зборачнага 160

Шаг разьбы 145 Шрафіроўка 67 Шрыфт чарцёжны 18 Штрыхоўка ў сячэннях 116 Шурпатасць паверхні 141

Эксплікацыя *180* Элементы — будынка *186*

— дэталі 208 Эліпс 104 Эскіз 79, 208

3 мест

I. Графічныя відарысы.Тэхніка выканання чарцяжоў і правілы іх афармлення	
§ 3. Некаторыя правілы афармлення чарцяжоў § 4. Лініі, якія прымяняюцца на чарцяжах	5 11 14 19 21
II. Спосабы пабудовы відарысаў на чарцяжах	
§ 7. Чарцяжы ў сістэме прамавугольных праекцый § 8. Пабудова відарысаў прадметаў на тэхнічных	27 33 42
III. Геаметрычныя пабудовы пры выкананні чарцяжоў	
	$\frac{46}{51}$
IV. Чарцяжы, тэхнічныя рысункі і эскізы прадметаў	
§ 12. Прамавугольныя праекцыі мнагаграннікаў і цел вярчэння	55 59
Правообладатель Национальный институт образования	

3мест 213

§	13. Тэхнічныя рысункі геаметрычных цел і дэталей	63
§	14. Пабудова праекцый пунктаў на паверхнях цел	
§ §	і дэталей	70 73 79
	V. Чытанне чарцяжоў у прамавугольных праекцыях	
§	17. Парадак чытання чарцяжоў	85
	VI. Графічныя пераўтварэнні геаметрычных фігур	
§ §	18. Пераўтварэнне відарысаў на чарцяжах	94 99
8 §	20. Выкананне чарцяжоў прадметаў са змяненнем	
	іх формы	102
	VII. Пабудова чарцяжоў, якія змяшчаюць сячэнні і разрэзы	
	21. Чарцяжы, якія змяшчаюць сячэнні	114
§ § 8	22. Чарцяжы, якія змяшчаюць разрэзы 23. Злучэнне на чарцяжы выгляду і разрэзу 24. Некаторыя асобыя выпадкі прымянення раз-	122 129
3	рэзаў	132
	VIII. Чытанне чарцяжоў, якія змяшчаюць умоўнасці і спрашчэнні	
§	25. Умоўнасці, спрашчэнні і абазначэнні на чарця-	
§	жах дэталей	137 142
	IX. Чарцяжы зборачных адзінак	
§	27. Чарцяжы злучэнняў дэталей	147

Ü	28. Прызначэнне і змест чарцяжоў зборачных адзінак	
	Заключэнне	166
	Дадаткі Літаратура для вучняў Кароткі тэрміналагічны слоўнік Прадметны паказальнік	199 200

Вінаградаў, В. Н.

В48 Чарчэнне: падручнік для 9-га кл. устаноў агул. сярэд. адукацыі з беларус. мовай навучання / В. Н. Вінаградаў. — 2-е выд., перапрац. і дап. — Мінск: Нац. ін-т адукацыі, 2014. — 216 с.: іл. ISBN 978-985-559-388-2.

УДК 744(075.3=161.3) ББК 30.11

Вучэбнае выданне

Вінаградаў Віктар Ніканавіч

ЧАРЧЭННЕ

Падручнік для 9 класа ўстаноў агульнай сярэдняй адукацыі з беларускай мовай навучання

2-е выданне, перапрацаванае і дапоўненае

Нач. рэдакцыйна-выдавецкага аддзела Γ . I. Бандарэнка Рэдактар H. M. Кумагер Мастацкі рэдактар I. A. Усенка Камп'ютарная вёрстка A. M. Кісялёва Карэктары K. B. Шобік, \mathcal{J} . P. $\mathcal{J}ocik$

Падпісана ў друк 20.05.2014. Фармат $60\times90/16$. Папера афсетная. Друк афсетны. Ум. друк. арк. 13,5. Ул.-выд. арк. 10,35. Тыраж 18 585 экз. Заказ

Навукова-метадычная ўстанова «Нацыянальны інстытут адукацыі» Міністэрства адукацыі Рэспублікі Беларусь. Пасведчанне аб дзяржаўнай рэгістрацыі выдаўца, вытворцы, распаўсюджвальніка друкаваных выданняў № 1/263 ад 02.04.2014. Вул. Караля, 16, 220004, г. Мінск.

ААТ «Паліграфкамбінат імя Якуба Коласа». Пасведчанне аб дзяржаўнай рэгістрацыі выдаўца, вытворцы, распаўсюджвальніка друкаваных выданняў № 2/3 ад 04.10.2013. Вул. Каржанеўскага, 20, 220024, г. Мінск

(Назва і нумар установы агульнай сярэдняй адукацыі)

Наву- чальны год	Імя і прозвішча вучня	Стан падруч- ніка пры атрыманні	Адзнака вучню за карыстанне падруч- нікам
20 /			
20 /			
20 /			
20 /			
20 /			
20 /			